/// \brief Give notes for a set of overloads. /// /// A companion to isExprCallable. In cases when the name that the programmer /// wrote was an overloaded function, we may be able to make some guesses about /// plausible overloads based on their return types; such guesses can be handed /// off to this method to be emitted as notes. /// /// \param Overloads - The overloads to note. /// \param FinalNoteLoc - If we've suppressed printing some overloads due to /// -fshow-overloads=best, this is the location to attach to the note about too /// many candidates. Typically this will be the location of the original /// ill-formed expression. static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, const SourceLocation FinalNoteLoc) { int ShownOverloads = 0; int SuppressedOverloads = 0; for (UnresolvedSetImpl::iterator It = Overloads.begin(), DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { // FIXME: Magic number for max shown overloads stolen from // OverloadCandidateSet::NoteCandidates. if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == Ovl_Best) { ++SuppressedOverloads; continue; } NamedDecl *Fn = (*It)->getUnderlyingDecl(); S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); ++ShownOverloads; } if (SuppressedOverloads) S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) << SuppressedOverloads; }
/// \brief Build a new nested-name-specifier for "identifier::", as described /// by ActOnCXXNestedNameSpecifier. /// /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in /// that it contains an extra parameter \p ScopeLookupResult, which provides /// the result of name lookup within the scope of the nested-name-specifier /// that was computed at template definition time. /// /// If ErrorRecoveryLookup is true, then this call is used to improve error /// recovery. This means that it should not emit diagnostics, it should /// just return true on failure. It also means it should only return a valid /// scope if it *knows* that the result is correct. It should not return in a /// dependent context, for example. Nor will it extend \p SS with the scope /// specifier. bool Sema::BuildCXXNestedNameSpecifier(Scope *S, IdentifierInfo &Identifier, SourceLocation IdentifierLoc, SourceLocation CCLoc, QualType ObjectType, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup) { LookupResult Found(*this, &Identifier, IdentifierLoc, LookupNestedNameSpecifierName); // Determine where to perform name lookup DeclContext *LookupCtx = 0; bool isDependent = false; if (!ObjectType.isNull()) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); LookupCtx = computeDeclContext(ObjectType); isDependent = ObjectType->isDependentType(); } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so look into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = isDependentScopeSpecifier(SS); Found.setContextRange(SS.getRange()); } bool ObjectTypeSearchedInScope = false; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. // The declaration context must be complete. if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS, LookupCtx)) return true; LookupQualifiedName(Found, LookupCtx); if (!ObjectType.isNull() && Found.empty()) { // C++ [basic.lookup.classref]p4: // If the id-expression in a class member access is a qualified-id of // the form // // class-name-or-namespace-name::... // // the class-name-or-namespace-name following the . or -> operator is // looked up both in the context of the entire postfix-expression and in // the scope of the class of the object expression. If the name is found // only in the scope of the class of the object expression, the name // shall refer to a class-name. If the name is found only in the // context of the entire postfix-expression, the name shall refer to a // class-name or namespace-name. [...] // // Qualified name lookup into a class will not find a namespace-name, // so we do not need to diagnose that case specifically. However, // this qualified name lookup may find nothing. In that case, perform // unqualified name lookup in the given scope (if available) or // reconstruct the result from when name lookup was performed at template // definition time. if (S) LookupName(Found, S); else if (ScopeLookupResult) Found.addDecl(ScopeLookupResult); ObjectTypeSearchedInScope = true; } } else if (!isDependent) { // Perform unqualified name lookup in the current scope. LookupName(Found, S); } // If we performed lookup into a dependent context and did not find anything, // that's fine: just build a dependent nested-name-specifier. if (Found.empty() && isDependent && !(LookupCtx && LookupCtx->isRecord() && (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) { // Don't speculate if we're just trying to improve error recovery. if (ErrorRecoveryLookup) return true; // We were not able to compute the declaration context for a dependent // base object type or prior nested-name-specifier, so this // nested-name-specifier refers to an unknown specialization. Just build // a dependent nested-name-specifier. SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); return false; } // FIXME: Deal with ambiguities cleanly. if (Found.empty() && !ErrorRecoveryLookup) { // We haven't found anything, and we're not recovering from a // different kind of error, so look for typos. DeclarationName Name = Found.getLookupName(); TypoCorrection Corrected; Found.clear(); if ((Corrected = CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, LookupCtx, EnteringContext, CTC_NoKeywords)) && isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) { std::string CorrectedStr(Corrected.getAsString(getLangOptions())); std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); if (LookupCtx) Diag(Found.getNameLoc(), diag::err_no_member_suggest) << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); else Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest) << Name << CorrectedQuotedStr << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); if (NamedDecl *ND = Corrected.getCorrectionDecl()) { Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr; Found.addDecl(ND); } Found.setLookupName(Corrected.getCorrection()); } else { Found.setLookupName(&Identifier); } } NamedDecl *SD = Found.getAsSingle<NamedDecl>(); if (isAcceptableNestedNameSpecifier(SD)) { if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) { // C++ [basic.lookup.classref]p4: // [...] If the name is found in both contexts, the // class-name-or-namespace-name shall refer to the same entity. // // We already found the name in the scope of the object. Now, look // into the current scope (the scope of the postfix-expression) to // see if we can find the same name there. As above, if there is no // scope, reconstruct the result from the template instantiation itself. NamedDecl *OuterDecl; if (S) { LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, LookupNestedNameSpecifierName); LookupName(FoundOuter, S); OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); } else OuterDecl = ScopeLookupResult; if (isAcceptableNestedNameSpecifier(OuterDecl) && OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || !Context.hasSameType( Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), Context.getTypeDeclType(cast<TypeDecl>(SD))))) { if (ErrorRecoveryLookup) return true; Diag(IdentifierLoc, diag::err_nested_name_member_ref_lookup_ambiguous) << &Identifier; Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) << ObjectType; Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); // Fall through so that we'll pick the name we found in the object // type, since that's probably what the user wanted anyway. } } // If we're just performing this lookup for error-recovery purposes, // don't extend the nested-name-specifier. Just return now. if (ErrorRecoveryLookup) return false; if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) { SS.Extend(Context, Namespace, IdentifierLoc, CCLoc); return false; } if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) { SS.Extend(Context, Alias, IdentifierLoc, CCLoc); return false; } QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); TypeLocBuilder TLB; if (isa<InjectedClassNameType>(T)) { InjectedClassNameTypeLoc InjectedTL = TLB.push<InjectedClassNameTypeLoc>(T); InjectedTL.setNameLoc(IdentifierLoc); } else if (isa<RecordType>(T)) { RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T); RecordTL.setNameLoc(IdentifierLoc); } else if (isa<TypedefType>(T)) { TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T); TypedefTL.setNameLoc(IdentifierLoc); } else if (isa<EnumType>(T)) { EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T); EnumTL.setNameLoc(IdentifierLoc); } else if (isa<TemplateTypeParmType>(T)) { TemplateTypeParmTypeLoc TemplateTypeTL = TLB.push<TemplateTypeParmTypeLoc>(T); TemplateTypeTL.setNameLoc(IdentifierLoc); } else if (isa<UnresolvedUsingType>(T)) { UnresolvedUsingTypeLoc UnresolvedTL = TLB.push<UnresolvedUsingTypeLoc>(T); UnresolvedTL.setNameLoc(IdentifierLoc); } else if (isa<SubstTemplateTypeParmType>(T)) { SubstTemplateTypeParmTypeLoc TL = TLB.push<SubstTemplateTypeParmTypeLoc>(T); TL.setNameLoc(IdentifierLoc); } else if (isa<SubstTemplateTypeParmPackType>(T)) { SubstTemplateTypeParmPackTypeLoc TL = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T); TL.setNameLoc(IdentifierLoc); } else { llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier"); } if (T->isEnumeralType()) Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec); SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), CCLoc); return false; } // Otherwise, we have an error case. If we don't want diagnostics, just // return an error now. if (ErrorRecoveryLookup) return true; // If we didn't find anything during our lookup, try again with // ordinary name lookup, which can help us produce better error // messages. if (Found.empty()) { Found.clear(LookupOrdinaryName); LookupName(Found, S); } // In Microsoft mode, if we are within a templated function and we can't // resolve Identifier, then extend the SS with Identifier. This will have // the effect of resolving Identifier during template instantiation. // The goal is to be able to resolve a function call whose // nested-name-specifier is located inside a dependent base class. // Example: // // class C { // public: // static void foo2() { } // }; // template <class T> class A { public: typedef C D; }; // // template <class T> class B : public A<T> { // public: // void foo() { D::foo2(); } // }; if (getLangOptions().MicrosoftExt) { DeclContext *DC = LookupCtx ? LookupCtx : CurContext; if (DC->isDependentContext() && DC->isFunctionOrMethod()) { SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); return false; } } unsigned DiagID; if (!Found.empty()) DiagID = diag::err_expected_class_or_namespace; else if (SS.isSet()) { Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx << SS.getRange(); return true; } else DiagID = diag::err_undeclared_var_use; if (SS.isSet()) Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange(); else Diag(IdentifierLoc, DiagID) << &Identifier; return true; }
/// Build a new nested-name-specifier for "identifier::", as described /// by ActOnCXXNestedNameSpecifier. /// /// \param S Scope in which the nested-name-specifier occurs. /// \param IdInfo Parser information about an identifier in the /// nested-name-spec. /// \param EnteringContext If true, enter the context specified by the /// nested-name-specifier. /// \param SS Optional nested name specifier preceding the identifier. /// \param ScopeLookupResult Provides the result of name lookup within the /// scope of the nested-name-specifier that was computed at template /// definition time. /// \param ErrorRecoveryLookup Specifies if the method is called to improve /// error recovery and what kind of recovery is performed. /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':' /// are allowed. The bool value pointed by this parameter is set to /// 'true' if the identifier is treated as if it was followed by ':', /// not '::'. /// \param OnlyNamespace If true, only considers namespaces in lookup. /// /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in /// that it contains an extra parameter \p ScopeLookupResult, which provides /// the result of name lookup within the scope of the nested-name-specifier /// that was computed at template definition time. /// /// If ErrorRecoveryLookup is true, then this call is used to improve error /// recovery. This means that it should not emit diagnostics, it should /// just return true on failure. It also means it should only return a valid /// scope if it *knows* that the result is correct. It should not return in a /// dependent context, for example. Nor will it extend \p SS with the scope /// specifier. bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup, bool *IsCorrectedToColon, bool OnlyNamespace) { if (IdInfo.Identifier->isEditorPlaceholder()) return true; LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc, OnlyNamespace ? LookupNamespaceName : LookupNestedNameSpecifierName); QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType); // Determine where to perform name lookup DeclContext *LookupCtx = nullptr; bool isDependent = false; if (IsCorrectedToColon) *IsCorrectedToColon = false; if (!ObjectType.isNull()) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); LookupCtx = computeDeclContext(ObjectType); isDependent = ObjectType->isDependentType(); } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so look into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = isDependentScopeSpecifier(SS); Found.setContextRange(SS.getRange()); } bool ObjectTypeSearchedInScope = false; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. // The declaration context must be complete. if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS, LookupCtx)) return true; LookupQualifiedName(Found, LookupCtx); if (!ObjectType.isNull() && Found.empty()) { // C++ [basic.lookup.classref]p4: // If the id-expression in a class member access is a qualified-id of // the form // // class-name-or-namespace-name::... // // the class-name-or-namespace-name following the . or -> operator is // looked up both in the context of the entire postfix-expression and in // the scope of the class of the object expression. If the name is found // only in the scope of the class of the object expression, the name // shall refer to a class-name. If the name is found only in the // context of the entire postfix-expression, the name shall refer to a // class-name or namespace-name. [...] // // Qualified name lookup into a class will not find a namespace-name, // so we do not need to diagnose that case specifically. However, // this qualified name lookup may find nothing. In that case, perform // unqualified name lookup in the given scope (if available) or // reconstruct the result from when name lookup was performed at template // definition time. if (S) LookupName(Found, S); else if (ScopeLookupResult) Found.addDecl(ScopeLookupResult); ObjectTypeSearchedInScope = true; } } else if (!isDependent) { // Perform unqualified name lookup in the current scope. LookupName(Found, S); } if (Found.isAmbiguous()) return true; // If we performed lookup into a dependent context and did not find anything, // that's fine: just build a dependent nested-name-specifier. if (Found.empty() && isDependent && !(LookupCtx && LookupCtx->isRecord() && (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) { // Don't speculate if we're just trying to improve error recovery. if (ErrorRecoveryLookup) return true; // We were not able to compute the declaration context for a dependent // base object type or prior nested-name-specifier, so this // nested-name-specifier refers to an unknown specialization. Just build // a dependent nested-name-specifier. SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc); return false; } if (Found.empty() && !ErrorRecoveryLookup) { // If identifier is not found as class-name-or-namespace-name, but is found // as other entity, don't look for typos. LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName); if (LookupCtx) LookupQualifiedName(R, LookupCtx); else if (S && !isDependent) LookupName(R, S); if (!R.empty()) { // Don't diagnose problems with this speculative lookup. R.suppressDiagnostics(); // The identifier is found in ordinary lookup. If correction to colon is // allowed, suggest replacement to ':'. if (IsCorrectedToColon) { *IsCorrectedToColon = true; Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class) << IdInfo.Identifier << getLangOpts().CPlusPlus << FixItHint::CreateReplacement(IdInfo.CCLoc, ":"); if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) Diag(ND->getLocation(), diag::note_declared_at); return true; } // Replacement '::' -> ':' is not allowed, just issue respective error. Diag(R.getNameLoc(), OnlyNamespace ? unsigned(diag::err_expected_namespace_name) : unsigned(diag::err_expected_class_or_namespace)) << IdInfo.Identifier << getLangOpts().CPlusPlus; if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) Diag(ND->getLocation(), diag::note_entity_declared_at) << IdInfo.Identifier; return true; } } if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) { // We haven't found anything, and we're not recovering from a // different kind of error, so look for typos. DeclarationName Name = Found.getLookupName(); Found.clear(); NestedNameSpecifierValidatorCCC CCC(*this); if (TypoCorrection Corrected = CorrectTypo( Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC, CTK_ErrorRecovery, LookupCtx, EnteringContext)) { if (LookupCtx) { bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && Name.getAsString() == Corrected.getAsString(getLangOpts()); if (DroppedSpecifier) SS.clear(); diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) << Name << LookupCtx << DroppedSpecifier << SS.getRange()); } else diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest) << Name); if (Corrected.getCorrectionSpecifier()) SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), SourceRange(Found.getNameLoc())); if (NamedDecl *ND = Corrected.getFoundDecl()) Found.addDecl(ND); Found.setLookupName(Corrected.getCorrection()); } else { Found.setLookupName(IdInfo.Identifier); } } NamedDecl *SD = Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr; bool IsExtension = false; bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension); if (!AcceptSpec && IsExtension) { AcceptSpec = true; Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum); } if (AcceptSpec) { if (!ObjectType.isNull() && !ObjectTypeSearchedInScope && !getLangOpts().CPlusPlus11) { // C++03 [basic.lookup.classref]p4: // [...] If the name is found in both contexts, the // class-name-or-namespace-name shall refer to the same entity. // // We already found the name in the scope of the object. Now, look // into the current scope (the scope of the postfix-expression) to // see if we can find the same name there. As above, if there is no // scope, reconstruct the result from the template instantiation itself. // // Note that C++11 does *not* perform this redundant lookup. NamedDecl *OuterDecl; if (S) { LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc, LookupNestedNameSpecifierName); LookupName(FoundOuter, S); OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); } else OuterDecl = ScopeLookupResult; if (isAcceptableNestedNameSpecifier(OuterDecl) && OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || !Context.hasSameType( Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), Context.getTypeDeclType(cast<TypeDecl>(SD))))) { if (ErrorRecoveryLookup) return true; Diag(IdInfo.IdentifierLoc, diag::err_nested_name_member_ref_lookup_ambiguous) << IdInfo.Identifier; Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) << ObjectType; Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); // Fall through so that we'll pick the name we found in the object // type, since that's probably what the user wanted anyway. } } if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD)) MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); // If we're just performing this lookup for error-recovery purposes, // don't extend the nested-name-specifier. Just return now. if (ErrorRecoveryLookup) return false; // The use of a nested name specifier may trigger deprecation warnings. DiagnoseUseOfDecl(SD, IdInfo.CCLoc); if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) { SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc); return false; } if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) { SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc); return false; } QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl())); TypeLocBuilder TLB; if (isa<InjectedClassNameType>(T)) { InjectedClassNameTypeLoc InjectedTL = TLB.push<InjectedClassNameTypeLoc>(T); InjectedTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<RecordType>(T)) { RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T); RecordTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<TypedefType>(T)) { TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T); TypedefTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<EnumType>(T)) { EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T); EnumTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<TemplateTypeParmType>(T)) { TemplateTypeParmTypeLoc TemplateTypeTL = TLB.push<TemplateTypeParmTypeLoc>(T); TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<UnresolvedUsingType>(T)) { UnresolvedUsingTypeLoc UnresolvedTL = TLB.push<UnresolvedUsingTypeLoc>(T); UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<SubstTemplateTypeParmType>(T)) { SubstTemplateTypeParmTypeLoc TL = TLB.push<SubstTemplateTypeParmTypeLoc>(T); TL.setNameLoc(IdInfo.IdentifierLoc); } else if (isa<SubstTemplateTypeParmPackType>(T)) { SubstTemplateTypeParmPackTypeLoc TL = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T); TL.setNameLoc(IdInfo.IdentifierLoc); } else { llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier"); } if (T->isEnumeralType()) Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec); SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), IdInfo.CCLoc); return false; } // Otherwise, we have an error case. If we don't want diagnostics, just // return an error now. if (ErrorRecoveryLookup) return true; // If we didn't find anything during our lookup, try again with // ordinary name lookup, which can help us produce better error // messages. if (Found.empty()) { Found.clear(LookupOrdinaryName); LookupName(Found, S); } // In Microsoft mode, if we are within a templated function and we can't // resolve Identifier, then extend the SS with Identifier. This will have // the effect of resolving Identifier during template instantiation. // The goal is to be able to resolve a function call whose // nested-name-specifier is located inside a dependent base class. // Example: // // class C { // public: // static void foo2() { } // }; // template <class T> class A { public: typedef C D; }; // // template <class T> class B : public A<T> { // public: // void foo() { D::foo2(); } // }; if (getLangOpts().MSVCCompat) { DeclContext *DC = LookupCtx ? LookupCtx : CurContext; if (DC->isDependentContext() && DC->isFunctionOrMethod()) { CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent()); if (ContainingClass && ContainingClass->hasAnyDependentBases()) { Diag(IdInfo.IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << IdInfo.Identifier << ContainingClass; SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc); return false; } } } if (!Found.empty()) { if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace) << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus; else { Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace) << IdInfo.Identifier << getLangOpts().CPlusPlus; if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) Diag(ND->getLocation(), diag::note_entity_declared_at) << IdInfo.Identifier; } } else if (SS.isSet()) Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier << LookupCtx << SS.getRange(); else Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use) << IdInfo.Identifier; return true; }
bool DeclExtractor::CheckTagDeclaration(TagDecl* NewTD, LookupResult& Previous){ // If the decl is already known invalid, don't check it. if (NewTD->isInvalidDecl()) return false; IdentifierInfo* Name = NewTD->getIdentifier(); // If this is not a definition, it must have a name. assert((Name != 0 || NewTD->isThisDeclarationADefinition()) && "Nameless record must be a definition!"); // Figure out the underlying type if this a enum declaration. We need to do // this early, because it's needed to detect if this is an incompatible // redeclaration. TagDecl::TagKind Kind = NewTD->getTagKind(); bool Invalid = false; assert(NewTD->getNumTemplateParameterLists() == 0 && "Cannot handle that yet!"); bool isExplicitSpecialization = false; if (Kind == TTK_Enum) { EnumDecl* ED = cast<EnumDecl>(NewTD); bool ScopedEnum = ED->isScoped(); const QualType QT = ED->getIntegerType(); if (QT.isNull() && ScopedEnum) // No underlying type explicitly specified, or we failed to parse the // type, default to int. ; //EnumUnderlying = m_Context->IntTy.getTypePtr(); else if (!QT.isNull()) { // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an // integral type; any cv-qualification is ignored. SourceLocation UnderlyingLoc; TypeSourceInfo* TI = 0; if ((TI = ED->getIntegerTypeSourceInfo())) UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); if (!QT->isDependentType() && !QT->isIntegralType(*m_Context)) { m_Sema->Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << QT; } if (TI) m_Sema->DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI, Sema::UPPC_FixedUnderlyingType); } } DeclContext *SearchDC = m_Sema->CurContext; DeclContext *DC = m_Sema->CurContext; //bool isStdBadAlloc = false; SourceLocation NameLoc = NewTD->getLocation(); // if (Name && SS.isNotEmpty()) { // // We have a nested-name tag ('struct foo::bar'). // // Check for invalid 'foo::'. // if (SS.isInvalid()) { // Name = 0; // goto CreateNewDecl; // } // // If this is a friend or a reference to a class in a dependent // // context, don't try to make a decl for it. // if (TUK == TUK_Friend || TUK == TUK_Reference) { // DC = computeDeclContext(SS, false); // if (!DC) { // IsDependent = true; // return 0; // } // } else { // DC = computeDeclContext(SS, true); // if (!DC) { // Diag(SS.getRange().getBegin(), // diag::err_dependent_nested_name_spec) // << SS.getRange(); // return 0; // } // } // if (RequireCompleteDeclContext(SS, DC)) // return 0; // SearchDC = DC; // // Look-up name inside 'foo::'. // LookupQualifiedName(Previous, DC); // if (Previous.isAmbiguous()) // return 0; // if (Previous.empty()) { // // Name lookup did not find anything. However, if the // // nested-name-specifier refers to the current instantiation, // // and that current instantiation has any dependent base // // classes, we might find something at instantiation time: treat // // this as a dependent elaborated-type-specifier. // // But this only makes any sense for reference-like lookups. // if (Previous.wasNotFoundInCurrentInstantiation() && // (TUK == TUK_Reference || TUK == TUK_Friend)) { // IsDependent = true; // return 0; // } // // A tag 'foo::bar' must already exist. // Diag(NameLoc, diag::err_not_tag_in_scope) // << Kind << Name << DC << SS.getRange(); // Name = 0; // Invalid = true; // goto CreateNewDecl; // } //} else if (Name) { // If this is a named struct, check to see if there was a previous forward // declaration or definition. // FIXME: We're looking into outer scopes here, even when we // shouldn't be. Doing so can result in ambiguities that we // shouldn't be diagnosing. //LookupName(Previous, S); if (Previous.isAmbiguous()) { LookupResult::Filter F = Previous.makeFilter(); while (F.hasNext()) { NamedDecl *ND = F.next(); if (ND->getDeclContext()->getRedeclContext() != SearchDC) F.erase(); } F.done(); } // Note: there used to be some attempt at recovery here. if (Previous.isAmbiguous()) { return false; } if (!m_Sema->getLangOpts().CPlusPlus) { // FIXME: This makes sure that we ignore the contexts associated // with C structs, unions, and enums when looking for a matching // tag declaration or definition. See the similar lookup tweak // in Sema::LookupName; is there a better way to deal with this? while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) SearchDC = SearchDC->getParent(); } } else if (m_Sema->getScopeForContext(m_Sema->CurContext) ->isFunctionPrototypeScope()) { // If this is an enum declaration in function prototype scope, set its // initial context to the translation unit. SearchDC = m_Context->getTranslationUnitDecl(); } if (Previous.isSingleResult() && Previous.getFoundDecl()->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. m_Sema->DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); // Just pretend that we didn't see the previous declaration. Previous.clear(); } if (m_Sema->getLangOpts().CPlusPlus && Name && DC && m_Sema->StdNamespace && DC->Equals(m_Sema->getStdNamespace()) && Name->isStr("bad_alloc")) { // This is a declaration of or a reference to "std::bad_alloc". //isStdBadAlloc = true; if (Previous.empty() && m_Sema->StdBadAlloc) { // std::bad_alloc has been implicitly declared (but made invisible to // name lookup). Fill in this implicit declaration as the previous // declaration, so that the declarations get chained appropriately. Previous.addDecl(m_Sema->getStdBadAlloc()); } } if (!Previous.empty()) { NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl(); // It's okay to have a tag decl in the same scope as a typedef // which hides a tag decl in the same scope. Finding this // insanity with a redeclaration lookup can only actually happen // in C++. // // This is also okay for elaborated-type-specifiers, which is // technically forbidden by the current standard but which is // okay according to the likely resolution of an open issue; // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 if (m_Sema->getLangOpts().CPlusPlus) { if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { TagDecl *Tag = TT->getDecl(); if (Tag->getDeclName() == Name && Tag->getDeclContext()->getRedeclContext() ->Equals(TD->getDeclContext()->getRedeclContext())) { PrevDecl = Tag; Previous.clear(); Previous.addDecl(Tag); Previous.resolveKind(); } } } } if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { // If this is a use of a previous tag, or if the tag is already declared // in the same scope (so that the definition/declaration completes or // rementions the tag), reuse the decl. if (m_Sema->isDeclInScope(PrevDecl, SearchDC, m_Sema->getScopeForContext(m_Sema->CurContext), isExplicitSpecialization)) { // Make sure that this wasn't declared as an enum and now used as a // struct or something similar. SourceLocation KWLoc = NewTD->getLocStart(); if (!m_Sema->isAcceptableTagRedeclaration(PrevTagDecl, Kind, NewTD->isThisDeclarationADefinition(), KWLoc, *Name)) { bool SafeToContinue = (PrevTagDecl->getTagKind() != TTK_Enum && Kind != TTK_Enum); if (SafeToContinue) m_Sema->Diag(KWLoc, diag::err_use_with_wrong_tag) << Name << FixItHint::CreateReplacement(SourceRange(KWLoc), PrevTagDecl->getKindName()); else m_Sema->Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use); if (SafeToContinue) Kind = PrevTagDecl->getTagKind(); else { // Recover by making this an anonymous redefinition. Name = 0; Previous.clear(); Invalid = true; } } if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { const EnumDecl *NewEnum = cast<EnumDecl>(NewTD); const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); // All conflicts with previous declarations are recovered by // returning the previous declaration. if (NewEnum->isScoped() != PrevEnum->isScoped()) { m_Sema->Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch) << PrevEnum->isScoped(); m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use); return false; } else if (PrevEnum->isFixed()) { QualType T = NewEnum->getIntegerType(); if (!m_Context->hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) { m_Sema->Diag(NameLoc.isValid() ? NameLoc : KWLoc, diag::err_enum_redeclare_type_mismatch) << T << PrevEnum->getIntegerType(); m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use); return false; } } else if (NewEnum->isFixed() != PrevEnum->isFixed()) { m_Sema->Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch) << PrevEnum->isFixed(); m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use); return false; } } if (!Invalid) { // If this is a use, just return the declaration we found. // Diagnose attempts to redefine a tag. if (NewTD->isThisDeclarationADefinition()) { if (TagDecl* Def = PrevTagDecl->getDefinition()) { // If we're defining a specialization and the previous // definition is from an implicit instantiation, don't emit an // error here; we'll catch this in the general case below. if (!isExplicitSpecialization || !isa<CXXRecordDecl>(Def) || cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { m_Sema->Diag(NameLoc, diag::err_redefinition) << Name; m_Sema->Diag(Def->getLocation(), diag::note_previous_definition); // If this is a redefinition, recover by making this // struct be anonymous, which will make any later // references get the previous definition. Name = 0; Previous.clear(); Invalid = true; } } else { // If the type is currently being defined, complain // about a nested redefinition. const TagType *Tag = cast<TagType>(m_Context->getTagDeclType(PrevTagDecl)); if (Tag->isBeingDefined()) { m_Sema->Diag(NameLoc, diag::err_nested_redefinition) << Name; m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_definition); Name = 0; Previous.clear(); Invalid = true; } } // Okay, this is definition of a previously declared or referenced // tag PrevDecl. We're going to create a new Decl for it. } } // If we get here we have (another) forward declaration or we // have a definition. Just create a new decl. } else { // If we get here, this is a definition of a new tag type in a nested // scope, e.g. "struct foo; void bar() { struct foo; }", just create a // new decl/type. We set PrevDecl to NULL so that the entities // have distinct types. Previous.clear(); } // If we get here, we're going to create a new Decl. If PrevDecl // is non-NULL, it's a definition of the tag declared by // PrevDecl. If it's NULL, we have a new definition. // Otherwise, PrevDecl is not a tag, but was found with tag // lookup. This is only actually possible in C++, where a few // things like templates still live in the tag namespace. } else { assert(m_Sema->getLangOpts().CPlusPlus); // Diagnose if the declaration is in scope. if (!m_Sema->isDeclInScope(PrevDecl, SearchDC, m_Sema->getScopeForContext(m_Sema->CurContext), isExplicitSpecialization)) { // do nothing // Otherwise it's a declaration. Call out a particularly common // case here. } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { unsigned Kind = 0; if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; m_Sema->Diag(NameLoc, diag::err_tag_definition_of_typedef) << Name << Kind << TND->getUnderlyingType(); m_Sema->Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; Invalid = true; // Otherwise, diagnose. } else { // The tag name clashes with something else in the target scope, // issue an error and recover by making this tag be anonymous. m_Sema->Diag(NameLoc, diag::err_redefinition_different_kind) << Name; m_Sema->Diag(PrevDecl->getLocation(), diag::note_previous_definition); Name = 0; Invalid = true; } // The existing declaration isn't relevant to us; we're in a // new scope, so clear out the previous declaration. Previous.clear(); } } if (Invalid) { return false; } return true; }
/// Look up the std::coroutine_traits<...>::promise_type for the given /// function type. static QualType lookupPromiseType(Sema &S, const FunctionProtoType *FnType, SourceLocation KwLoc, SourceLocation FuncLoc) { // FIXME: Cache std::coroutine_traits once we've found it. NamespaceDecl *StdExp = S.lookupStdExperimentalNamespace(); if (!StdExp) { S.Diag(KwLoc, diag::err_implied_coroutine_type_not_found) << "std::experimental::coroutine_traits"; return QualType(); } LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_traits"), FuncLoc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Result, StdExp)) { S.Diag(KwLoc, diag::err_implied_coroutine_type_not_found) << "std::experimental::coroutine_traits"; return QualType(); } ClassTemplateDecl *CoroTraits = Result.getAsSingle<ClassTemplateDecl>(); if (!CoroTraits) { Result.suppressDiagnostics(); // We found something weird. Complain about the first thing we found. NamedDecl *Found = *Result.begin(); S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); return QualType(); } // Form template argument list for coroutine_traits<R, P1, P2, ...>. TemplateArgumentListInfo Args(KwLoc, KwLoc); Args.addArgument(TemplateArgumentLoc( TemplateArgument(FnType->getReturnType()), S.Context.getTrivialTypeSourceInfo(FnType->getReturnType(), KwLoc))); // FIXME: If the function is a non-static member function, add the type // of the implicit object parameter before the formal parameters. for (QualType T : FnType->getParamTypes()) Args.addArgument(TemplateArgumentLoc( TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); // Build the template-id. QualType CoroTrait = S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); if (CoroTrait.isNull()) return QualType(); if (S.RequireCompleteType(KwLoc, CoroTrait, diag::err_coroutine_type_missing_specialization)) return QualType(); auto *RD = CoroTrait->getAsCXXRecordDecl(); assert(RD && "specialization of class template is not a class?"); // Look up the ::promise_type member. LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, Sema::LookupOrdinaryName); S.LookupQualifiedName(R, RD); auto *Promise = R.getAsSingle<TypeDecl>(); if (!Promise) { S.Diag(FuncLoc, diag::err_implied_std_coroutine_traits_promise_type_not_found) << RD; return QualType(); } // The promise type is required to be a class type. QualType PromiseType = S.Context.getTypeDeclType(Promise); auto buildElaboratedType = [&]() { auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, StdExp); NNS = NestedNameSpecifier::Create(S.Context, NNS, false, CoroTrait.getTypePtr()); return S.Context.getElaboratedType(ETK_None, NNS, PromiseType); }; if (!PromiseType->getAsCXXRecordDecl()) { S.Diag(FuncLoc, diag::err_implied_std_coroutine_traits_promise_type_not_class) << buildElaboratedType(); return QualType(); } if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), diag::err_coroutine_promise_type_incomplete)) return QualType(); return PromiseType; }
Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType) { ReceiverType = ParsedType(); // If the identifier is "super" and there is no trailing dot, we're // messaging super. If the identifier is "super" and there is a // trailing dot, it's an instance message. if (IsSuper && S->isInObjcMethodScope()) return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); LookupName(Result, S); switch (Result.getResultKind()) { case LookupResult::NotFound: // Normal name lookup didn't find anything. If we're in an // Objective-C method, look for ivars. If we find one, we're done! // FIXME: This is a hack. Ivar lookup should be part of normal // lookup. if (ObjCMethodDecl *Method = getCurMethodDecl()) { ObjCInterfaceDecl *ClassDeclared; if (Method->getClassInterface()->lookupInstanceVariable(Name, ClassDeclared)) return ObjCInstanceMessage; } // Break out; we'll perform typo correction below. break; case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: case LookupResult::Ambiguous: Result.suppressDiagnostics(); return ObjCInstanceMessage; case LookupResult::Found: { // If the identifier is a class or not, and there is a trailing dot, // it's an instance message. if (HasTrailingDot) return ObjCInstanceMessage; // We found something. If it's a type, then we have a class // message. Otherwise, it's an instance message. NamedDecl *ND = Result.getFoundDecl(); QualType T; if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) T = Context.getObjCInterfaceType(Class); else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) T = Context.getTypeDeclType(Type); else return ObjCInstanceMessage; // We have a class message, and T is the type we're // messaging. Build source-location information for it. TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } // Determine our typo-correction context. CorrectTypoContext CTC = CTC_Expression; if (ObjCMethodDecl *Method = getCurMethodDecl()) if (Method->getClassInterface() && Method->getClassInterface()->getSuperClass()) CTC = CTC_ObjCMessageReceiver; if (DeclarationName Corrected = CorrectTypo(Result, S, 0, 0, false, CTC)) { if (Result.isSingleResult()) { // If we found a declaration, correct when it refers to an Objective-C // class. NamedDecl *ND = Result.getFoundDecl(); if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) { Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Result.getLookupName() << FixItHint::CreateReplacement(SourceRange(NameLoc), ND->getNameAsString()); Diag(ND->getLocation(), diag::note_previous_decl) << Corrected; QualType T = Context.getObjCInterfaceType(Class); TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } else if (Result.empty() && Corrected.getAsIdentifierInfo() && Corrected.getAsIdentifierInfo()->isStr("super")) { // If we've found the keyword "super", this is a send to super. Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Corrected << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); return ObjCSuperMessage; } } // Fall back: let the parser try to parse it as an instance message. return ObjCInstanceMessage; }
/// Diagnose the path which caused the given declaration or base class /// to become inaccessible. static void DiagnoseAccessPath(Sema &S, const EffectiveContext &EC, AccessTarget &Entity) { AccessSpecifier Access = Entity.getAccess(); const CXXRecordDecl *NamingClass = Entity.getNamingClass(); NamingClass = NamingClass->getCanonicalDecl(); NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0); const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); // Easy case: the decl's natural access determined its path access. // We have to check against AS_private here in case Access is AS_none, // indicating a non-public member of a private base class. if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) { switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) { case AR_inaccessible: { S.Diag(D->getLocation(), diag::note_access_natural) << (unsigned) (Access == AS_protected) << /*FIXME: not implicitly*/ 0; return; } case AR_accessible: break; case AR_dependent: llvm_unreachable("can't diagnose dependent access failures"); return; } } CXXBasePaths Paths; CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths); CXXBasePath::iterator I = Path.end(), E = Path.begin(); while (I != E) { --I; const CXXBaseSpecifier *BS = I->Base; AccessSpecifier BaseAccess = BS->getAccessSpecifier(); // If this is public inheritance, or the derived class is a friend, // skip this step. if (BaseAccess == AS_public) continue; switch (GetFriendKind(S, EC, I->Class)) { case AR_accessible: continue; case AR_inaccessible: break; case AR_dependent: llvm_unreachable("can't diagnose dependent access failures"); } // Check whether this base specifier is the tighest point // constraining access. We have to check against AS_private for // the same reasons as above. if (BaseAccess == AS_private || BaseAccess >= Access) { // We're constrained by inheritance, but we want to say // "declared private here" if we're diagnosing a hierarchy // conversion and this is the final step. unsigned diagnostic; if (D) diagnostic = diag::note_access_constrained_by_path; else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural; else diagnostic = diag::note_access_constrained_by_path; S.Diag(BS->getSourceRange().getBegin(), diagnostic) << BS->getSourceRange() << (BaseAccess == AS_protected) << (BS->getAccessSpecifierAsWritten() == AS_none); return; } } llvm_unreachable("access not apparently constrained by path"); }
NamespaceDecl *Sema::ActOnRogerNamespaceHeaderPart(DeclContext *DeclContext, IdentifierInfo *II, SourceLocation IdentLoc, AttributeList *AttrList) { // set CurContext SourceLocation NamespaceLoc; SourceLocation InlineLoc; SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; assert(II); SourceLocation Loc = IdentLoc; bool IsInline = false; bool IsInvalid = false; bool IsStd = false; bool AddToKnown = false; //Scope *DeclRegionScope = NamespcScope->getParent(); NamespaceDecl *PrevNS = 0; // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not // have been previously defined in the declarative region in // which the original-namespace-definition appears. The // identifier in an original-namespace-definition is the name of // the namespace. Subsequently in that declarative region, it is // treated as an original-namespace-name. // // Since namespace names are unique in their scope, and we don't // look through using directives, just look for any ordinary names. const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member | Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag | Decl::IDNS_Namespace; NamedDecl *PrevDecl = 0; DeclContext::lookup_result R = DeclContext->getRedeclContext()->lookup(II); for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { if ((*I)->getIdentifierNamespace() & IDNS) { PrevDecl = *I; break; } } PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); if (PrevNS) { // This is an extended namespace definition. if (IsInline != PrevNS->isInline()) { // DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, // &IsInline, PrevNS); assert(false && "need to implement this"); } return PrevNS; } else if (PrevDecl) { // This is an invalid name redefinition. Diag(Loc, diag::err_redefinition_different_kind) << II; Diag(PrevDecl->getLocation(), diag::note_previous_definition); IsInvalid = true; // Continue on to push Namespc as current DeclContext and return it. } else if (II->isStr("std") && DeclContext->getRedeclContext()->isTranslationUnit()) { // This is the first "real" definition of the namespace "std", so update // our cache of the "std" namespace to point at this definition. PrevNS = getStdNamespace(); IsStd = true; AddToKnown = !IsInline; } else { // We've seen this namespace for the first time. AddToKnown = !IsInline; } NamespaceDecl *Namespc = NamespaceDecl::Create(Context, DeclContext, IsInline, StartLoc, Loc, II, PrevNS); Namespc->IsRogerNamespace = true; if (IsInvalid) Namespc->setInvalidDecl(); //ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); // FIXME: Should we be merging attributes? if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) PushNamespaceVisibilityAttr(Attr, Loc); if (IsStd) StdNamespace = Namespc; if (AddToKnown) KnownNamespaces[Namespc] = false; DeclContext->addDecl(Namespc); if (PrevNS) { return PrevNS; } else { return Namespc; } }
/// \brief Build a new nested-name-specifier for "identifier::", as described /// by ActOnCXXNestedNameSpecifier. /// /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in /// that it contains an extra parameter \p ScopeLookupResult, which provides /// the result of name lookup within the scope of the nested-name-specifier /// that was computed at template definition time. /// /// If ErrorRecoveryLookup is true, then this call is used to improve error /// recovery. This means that it should not emit diagnostics, it should /// just return null on failure. It also means it should only return a valid /// scope if it *knows* that the result is correct. It should not return in a /// dependent context, for example. Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II, QualType ObjectType, NamedDecl *ScopeLookupResult, bool EnteringContext, bool ErrorRecoveryLookup) { NestedNameSpecifier *Prefix = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); // Determine where to perform name lookup DeclContext *LookupCtx = 0; bool isDependent = false; if (!ObjectType.isNull()) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); LookupCtx = computeDeclContext(ObjectType); isDependent = ObjectType->isDependentType(); } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so long into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = isDependentScopeSpecifier(SS); Found.setContextRange(SS.getRange()); } bool ObjectTypeSearchedInScope = false; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. // The declaration context must be complete. if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS)) return 0; LookupQualifiedName(Found, LookupCtx); if (!ObjectType.isNull() && Found.empty()) { // C++ [basic.lookup.classref]p4: // If the id-expression in a class member access is a qualified-id of // the form // // class-name-or-namespace-name::... // // the class-name-or-namespace-name following the . or -> operator is // looked up both in the context of the entire postfix-expression and in // the scope of the class of the object expression. If the name is found // only in the scope of the class of the object expression, the name // shall refer to a class-name. If the name is found only in the // context of the entire postfix-expression, the name shall refer to a // class-name or namespace-name. [...] // // Qualified name lookup into a class will not find a namespace-name, // so we do not need to diagnoste that case specifically. However, // this qualified name lookup may find nothing. In that case, perform // unqualified name lookup in the given scope (if available) or // reconstruct the result from when name lookup was performed at template // definition time. if (S) LookupName(Found, S); else if (ScopeLookupResult) Found.addDecl(ScopeLookupResult); ObjectTypeSearchedInScope = true; } } else if (isDependent) { // Don't speculate if we're just trying to improve error recovery. if (ErrorRecoveryLookup) return 0; // We were not able to compute the declaration context for a dependent // base object type or prior nested-name-specifier, so this // nested-name-specifier refers to an unknown specialization. Just build // a dependent nested-name-specifier. if (!Prefix) return NestedNameSpecifier::Create(Context, &II); return NestedNameSpecifier::Create(Context, Prefix, &II); } else { // Perform unqualified name lookup in the current scope. LookupName(Found, S); } // FIXME: Deal with ambiguities cleanly. if (Found.empty() && !ErrorRecoveryLookup) { // We haven't found anything, and we're not recovering from a // different kind of error, so look for typos. DeclarationName Name = Found.getLookupName(); if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext) && Found.isSingleResult() && isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) { if (LookupCtx) Diag(Found.getNameLoc(), diag::err_no_member_suggest) << Name << LookupCtx << Found.getLookupName() << SS.getRange() << CodeModificationHint::CreateReplacement(Found.getNameLoc(), Found.getLookupName().getAsString()); else Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest) << Name << Found.getLookupName() << CodeModificationHint::CreateReplacement(Found.getNameLoc(), Found.getLookupName().getAsString()); if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) Diag(ND->getLocation(), diag::note_previous_decl) << ND->getDeclName(); } else Found.clear(); } NamedDecl *SD = Found.getAsSingle<NamedDecl>(); if (isAcceptableNestedNameSpecifier(SD)) { if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) { // C++ [basic.lookup.classref]p4: // [...] If the name is found in both contexts, the // class-name-or-namespace-name shall refer to the same entity. // // We already found the name in the scope of the object. Now, look // into the current scope (the scope of the postfix-expression) to // see if we can find the same name there. As above, if there is no // scope, reconstruct the result from the template instantiation itself. NamedDecl *OuterDecl; if (S) { LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName); LookupName(FoundOuter, S); OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); } else OuterDecl = ScopeLookupResult; if (isAcceptableNestedNameSpecifier(OuterDecl) && OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || !Context.hasSameType( Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), Context.getTypeDeclType(cast<TypeDecl>(SD))))) { if (ErrorRecoveryLookup) return 0; Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) << &II; Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) << ObjectType; Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); // Fall through so that we'll pick the name we found in the object // type, since that's probably what the user wanted anyway. } } if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) return NestedNameSpecifier::Create(Context, Prefix, Namespace); // FIXME: It would be nice to maintain the namespace alias name, then // see through that alias when resolving the nested-name-specifier down to // a declaration context. if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) return NestedNameSpecifier::Create(Context, Prefix, Alias->getNamespace()); QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); return NestedNameSpecifier::Create(Context, Prefix, false, T.getTypePtr()); } // Otherwise, we have an error case. If we don't want diagnostics, just // return an error now. if (ErrorRecoveryLookup) return 0; // If we didn't find anything during our lookup, try again with // ordinary name lookup, which can help us produce better error // messages. if (Found.empty()) { Found.clear(LookupOrdinaryName); LookupName(Found, S); } unsigned DiagID; if (!Found.empty()) DiagID = diag::err_expected_class_or_namespace; else if (SS.isSet()) { Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange(); return 0; } else DiagID = diag::err_undeclared_var_use; if (SS.isSet()) Diag(IdLoc, DiagID) << &II << SS.getRange(); else Diag(IdLoc, DiagID) << &II; return 0; }
Action::OwningExprResult Sema::BuildMemberReferenceExpr(Expr *BaseExpr, const Type *BaseExprType, SourceLocation OpLoc, LookupResult &R) { const Type* BaseType = BaseExprType; if (const PointerType *P = dyn_cast<PointerType>(BaseType)) BaseType = P->getPointeeType(); //R.setBaseObjectType(BaseType); //const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); //DeclarationName MemberName = MemberNameInfo.getName(); //SourceLocation MemberLoc = MemberNameInfo.getLoc(); IdentifierInfo *II = R.getLookupName(); if (R.isAmbiguous()) return ExprError(); if (R.empty()) { // FIXME: make sure this prints the '*' for pointer-to-struct types (?) //DeclContext *DC = BaseType->getAs<StructType>()->getDecl(); // FIXME: clang prints DC instead of BaseExprType here. Don't do that, // else we don't print struct names right. However, make sure ParenTypes // get desugared once they exist. Diag(R.getNameLoc(), diag::no_field) << II << BaseExprType; //Diag(R.getNameLoc(), diag::err_no_member) //<< MemberName << DC //<< (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); return ExprError(); } assert(R.isSingleResult()); NamedDecl *MemberDecl = R.getFoundDecl(); #if 0 DeclAccessPair FoundDecl = R.begin().getPair(); // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (MemberDecl->isInvalidDecl()) return ExprError(); bool ShouldCheckUse = true; if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { // Don't diagnose the use of a virtual member function unless it's // explicitly qualified. if (MD->isVirtual()) ShouldCheckUse = false; } // Check the use of this member. if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) { Owned(BaseExpr); return ExprError(); } #endif if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { //return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, //FD, FoundDecl, MemberNameInfo); return Owned(BuildMemberExpr(*this, Context, BaseExpr, FD, R.getNameLoc(), FD->getType())); } #if 0 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) // We may have found a field within an anonymous union or struct // (C++ [class.union]). return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, BaseExpr, OpLoc); if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, Var, FoundDecl, MemberNameInfo, Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary)); } if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { ExprValueKind valueKind; QualType type; if (MemberFn->isInstance()) { valueKind = VK_RValue; type = Context.BoundMemberTy; } else { valueKind = VK_LValue; type = MemberFn->getType(); } return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, MemberFn, FoundDecl, MemberNameInfo, type, valueKind, OK_Ordinary)); } assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, Enum, FoundDecl, MemberNameInfo, Enum->getType(), VK_RValue, OK_Ordinary)); } Owned(BaseExpr); // We found something that we didn't expect. Complain. if (isa<TypeDecl>(MemberDecl)) Diag(MemberLoc, diag::err_typecheck_member_reference_type) << MemberName << BaseType << int(IsArrow); else Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) << MemberName << BaseType << int(IsArrow); Diag(MemberDecl->getLocation(), diag::note_member_declared_here) << MemberName; R.suppressDiagnostics(); #endif return ExprError(); }