コード例 #1
0
void Shutdown()
{
	if (s_vertex_loader_map.size() > 0 && g_ActiveConfig.bDumpVertexLoaders)
		DumpLoadersCode();
	s_vertex_loader_map.clear();
	s_native_vertex_map.clear();
}
コード例 #2
0
void Shutdown()
{
	std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
	s_vertex_loader_map.clear();
	s_native_vertex_map.clear();
}
コード例 #3
0
namespace VertexLoaderManager
{

float position_cache[3][4];
u32 position_matrix_index[3];

typedef std::unordered_map<PortableVertexDeclaration, std::unique_ptr<NativeVertexFormat>> NativeVertexFormatMap;
static NativeVertexFormatMap s_native_vertex_map;
static NativeVertexFormat* s_current_vtx_fmt;
u32 g_current_components;

typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoaderBase>> VertexLoaderMap;
static std::mutex s_vertex_loader_map_lock;
static VertexLoaderMap s_vertex_loader_map;
// TODO - change into array of pointers. Keep a map of all seen so far.

u8 *cached_arraybases[12];

void Init()
{
	MarkAllDirty();
	for (auto& map_entry : g_main_cp_state.vertex_loaders)
		map_entry = nullptr;
	for (auto& map_entry : g_preprocess_cp_state.vertex_loaders)
		map_entry = nullptr;
	SETSTAT(stats.numVertexLoaders, 0);
}

void Shutdown()
{
	std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
	s_vertex_loader_map.clear();
	s_native_vertex_map.clear();
}

void UpdateVertexArrayPointers()
{
	// Anything to update?
	if (!g_main_cp_state.bases_dirty)
		return;

	// Some games such as Burnout 2 can put invalid addresses into
	// the array base registers. (see issue 8591)
	// But the vertex arrays with invalid addresses aren't actually enabled.
	// Note: Only array bases 0 through 11 are used by the Vertex loaders.
	//       12 through 15 are used for loading data into xfmem.
	for (int i = 0; i < 12; i++)
	{
		// Only update the array base if the vertex description states we are going to use it.
		if (g_main_cp_state.vtx_desc.GetVertexArrayStatus(i) & MASK_INDEXED)
			cached_arraybases[i] = Memory::GetPointer(g_main_cp_state.array_bases[i]);
	}

	g_main_cp_state.bases_dirty = false;
}

namespace
{
struct entry
{
	std::string text;
	u64 num_verts;
	bool operator < (const entry &other) const
	{
		return num_verts > other.num_verts;
	}
};
}

void AppendListToString(std::string *dest)
{
	std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
	std::vector<entry> entries;

	size_t total_size = 0;
	for (const auto& map_entry : s_vertex_loader_map)
	{
		entry e;
		map_entry.second->AppendToString(&e.text);
		e.num_verts = map_entry.second->m_numLoadedVertices;
		entries.push_back(e);
		total_size += e.text.size() + 1;
	}
	sort(entries.begin(), entries.end());
	dest->reserve(dest->size() + total_size);
	for (const entry& entry : entries)
	{
		*dest += entry.text;
		*dest += '\n';
	}
}

void MarkAllDirty()
{
	g_main_cp_state.attr_dirty = BitSet32::AllTrue(8);
	g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8);
}

static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false)
{
	CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state;

	VertexLoaderBase* loader;
	if (state->attr_dirty[vtx_attr_group])
	{
		// We are not allowed to create a native vertex format on preprocessing as this is on the wrong thread
		bool check_for_native_format = !preprocess;

		VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
		std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
		VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
		if (iter != s_vertex_loader_map.end())
		{
			loader = iter->second.get();
			check_for_native_format &= !loader->m_native_vertex_format;
		}
		else
		{
			loader = VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
			s_vertex_loader_map[uid] = std::unique_ptr<VertexLoaderBase>(loader);
			INCSTAT(stats.numVertexLoaders);
		}
		if (check_for_native_format)
		{
			// search for a cached native vertex format
			const PortableVertexDeclaration& format = loader->m_native_vtx_decl;
			std::unique_ptr<NativeVertexFormat>& native = s_native_vertex_map[format];
			if (!native)
			{
				native.reset(g_vertex_manager->CreateNativeVertexFormat());
				native->Initialize(format);
			}
			loader->m_native_vertex_format = native.get();
		}
		state->vertex_loaders[vtx_attr_group] = loader;
		state->attr_dirty[vtx_attr_group] = false;
	} else {
		loader = state->vertex_loaders[vtx_attr_group];
	}

	// Lookup pointers for any vertex arrays.
	if (!preprocess)
		UpdateVertexArrayPointers();

	return loader;
}

int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool skip_drawing, bool is_preprocess)
{
	if (!count)
		return 0;

	VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess);

	int size = count * loader->m_VertexSize;
	if ((int)src.size() < size)
		return -1;

	if (skip_drawing || is_preprocess)
		return size;

	// If the native vertex format changed, force a flush.
	if (loader->m_native_vertex_format != s_current_vtx_fmt ||
	    loader->m_native_components != g_current_components)
	{
		VertexManagerBase::Flush();
	}
	s_current_vtx_fmt = loader->m_native_vertex_format;
	g_current_components = loader->m_native_components;

	// if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads.
	// They still need to go through vertex loading, because we need to calculate a zfreeze refrence slope.
	bool cullall = (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5);

	DataReader dst = VertexManagerBase::PrepareForAdditionalData(primitive, count,
			loader->m_native_vtx_decl.stride, cullall);

	count = loader->RunVertices(src, dst, count);

	IndexGenerator::AddIndices(primitive, count);

	VertexManagerBase::FlushData(count, loader->m_native_vtx_decl.stride);

	ADDSTAT(stats.thisFrame.numPrims, count);
	INCSTAT(stats.thisFrame.numPrimitiveJoins);
	return size;
}

NativeVertexFormat* GetCurrentVertexFormat()
{
	return s_current_vtx_fmt;
}

}  // namespace
コード例 #4
0
namespace VertexLoaderManager
{
static VertexLoaderMap s_vertex_loader_map;
static NativeVertexFormatMap s_native_vertex_map;
static NativeVertexFormat* s_current_vtx_fmt;
u32 g_current_components;
// TODO - change into array of pointers. Keep a map of all seen so far.
// Used in D3D12 backend, to populate input layouts used by cached-to-disk PSOs.
NativeVertexFormatMap* GetNativeVertexFormatMap()
{
	return &s_native_vertex_map;
}

NativeVertexFormat* GetCurrentVertexFormat()
{
	return s_current_vtx_fmt;
}

namespace
{
	struct entry
	{
		std::string text;
		u64 num_verts;
		bool operator < (const entry &other) const
		{
			return num_verts > other.num_verts;
		}
	};

	struct codeentry
	{
		std::string name;
		std::string conf;
		u64 num_verts;
		std::string hash;
		bool operator < (const codeentry &other) const
		{
			return num_verts > other.num_verts;
		}
	};
}

static std::string To_HexString(u32 in) {
	char hexString[2 * sizeof(u32) + 8];
	sprintf(hexString, "0x%08xu", in);
	return std::string(hexString);
}

static void DumpLoadersCode()
{
	std::vector<codeentry> entries;
	for (VertexLoaderMap::const_iterator iter = s_vertex_loader_map.begin(); iter != s_vertex_loader_map.end(); ++iter)
	{
		if (!iter->second->IsPrecompiled())
		{
			codeentry e;
			e.conf.append(To_HexString(iter->first.GetElement(0)));
			e.conf.append(", ");
			e.conf.append(To_HexString(iter->first.GetElement(1)));
			e.conf.append(", ");
			e.conf.append(To_HexString(iter->first.GetElement(2)));
			e.conf.append(", ");
			e.conf.append(To_HexString(iter->first.GetElement(3)));				
			e.name = iter->second->GetName();
			e.num_verts = iter->second->m_numLoadedVertices;
			e.hash = std::to_string(iter->first.GetHash());
			entries.push_back(e);
		}
	}
	if (entries.size() == 0)
	{
		return;
	}		
	std::string filename = StringFromFormat("%sG_%s_pvt.h", File::GetUserPath(D_DUMP_IDX).c_str(), last_game_code.c_str());		
	std::string header;
	header.append("// Copyright 2013 Dolphin Emulator Project\n");
	header.append("// Licensed under GPLv2+\n");
	header.append("// Refer to the license.txt file included.\n");
	header.append("// Added for Ishiiruka by Tino\n");
	header.append("#pragma once\n");
	header.append("#include <map>\n");
	header.append("#include \"VideoCommon/NativeVertexFormat.h\"\n");
	header.append("class G_");
	header.append(last_game_code);
	header.append("_pvt\n{\npublic:\n");
	header.append("static void Initialize(std::map<u64, TCompiledLoaderFunction> &pvlmap);\n");
	header.append("};\n");
	std::ofstream headerfile(filename);
	headerfile << header;
	headerfile.close();
	filename = StringFromFormat("%sG_%s_pvt.cpp", File::GetUserPath(D_DUMP_IDX).c_str(), last_game_code.c_str());		
	sort(entries.begin(), entries.end());
	std::string sourcecode;
	sourcecode.append("#include \"VideoCommon/G_");
	sourcecode.append(last_game_code);
	sourcecode.append("_pvt.h\"\n");
	sourcecode.append("#include \"VideoCommon/VertexLoader_Template.h\"\n\n");
	sourcecode.append("\n\nvoid G_");
	sourcecode.append(last_game_code);
	sourcecode.append("_pvt::Initialize(std::map<u64, TCompiledLoaderFunction> &pvlmap)\n{\n");
	for (std::vector<codeentry>::const_iterator iter = entries.begin(); iter != entries.end(); ++iter)
	{
		sourcecode.append("\t// ");
		sourcecode.append(iter->name);
		sourcecode.append("\n// num_verts= ");
		sourcecode.append(std::to_string(iter->num_verts));			
		sourcecode.append("#if _M_SSE >= 0x301\n");
		sourcecode.append("\tif (cpu_info.bSSSE3)\n");
		sourcecode.append("\t{\n");
		sourcecode.append("\t\tpvlmap[");
		sourcecode.append(iter->hash);
		sourcecode.append("] = ");
		sourcecode.append("TemplatedLoader");
		sourcecode.append("<0x301, ");
		sourcecode.append(iter->conf);
		sourcecode.append(">;\n");
		sourcecode.append("\t}\n\telse\n");
		sourcecode.append("#endif\n");
		sourcecode.append("\t{\n");
		sourcecode.append("\t\tpvlmap[");
		sourcecode.append(iter->hash);
		sourcecode.append("] = ");
		sourcecode.append("TemplatedLoader");
		sourcecode.append("<0, ");
		sourcecode.append(iter->conf);
		sourcecode.append(">;\n");
		sourcecode.append("\t}\n");
	}
	sourcecode.append("}\n");
	std::ofstream out(filename);
	out << sourcecode;
	out.close();
}

void AppendListToString(std::string *dest)
{
	std::vector<entry> entries;

	size_t total_size = 0;
	for (VertexLoaderMap::const_iterator iter = s_vertex_loader_map.begin(); iter != s_vertex_loader_map.end(); ++iter)
	{
		entry e;
		iter->second->AppendToString(&e.text);
		e.num_verts = iter->second->m_numLoadedVertices;
		entries.push_back(e);
		total_size += e.text.size() + 1;
	}
	sort(entries.begin(), entries.end());
	dest->reserve(dest->size() + total_size);
	for (std::vector<entry>::const_iterator iter = entries.begin(); iter != entries.end(); ++iter)
	{
		dest->append(iter->text);
	}
}

void Init()
{
	MarkAllDirty();
	for (VertexLoaderBase*& vertexLoader : g_main_cp_state.vertex_loaders)
		vertexLoader = nullptr;
	last_game_code = SConfig::GetInstance().m_strUniqueID;
}

void Shutdown()
{
	if (s_vertex_loader_map.size() > 0 && g_ActiveConfig.bDumpVertexLoaders)
		DumpLoadersCode();
	s_vertex_loader_map.clear();
	s_native_vertex_map.clear();
}

void UpdateVertexArrayPointers()
{
	// Anything to update?
	if (!g_main_cp_state.bases_dirty)
		return;

	// Some games such as Burnout 2 can put invalid addresses into
	// the array base registers. (see issue 8591)
	// But the vertex arrays with invalid addresses aren't actually enabled.
	// Note: Only array bases 0 through 11 are used by the Vertex loaders.
	//       12 through 15 are used for loading data into xfmem.
	for (int i = 0; i < 12; i++)
	{
		// Only update the array base if the vertex description states we are going to use it.
		if (g_main_cp_state.vtx_desc.GetVertexArrayStatus(i) >= 0x2)
			cached_arraybases[i] = Memory::GetPointer(g_main_cp_state.array_bases[i]);
	}

	g_main_cp_state.bases_dirty = false;
}

inline NativeVertexFormat* GetNativeVertexFormat(const PortableVertexDeclaration& format)
{
	auto& native = s_native_vertex_map[format];
	if (!native)
	{
		auto raw_pointer = g_vertex_manager->CreateNativeVertexFormat(format);
		native = std::unique_ptr<NativeVertexFormat>(raw_pointer);
	}
	return native.get();
}

void MarkAllDirty()
{
	g_main_cp_state.attr_dirty = 0xff;
	g_main_cp_state.bases_dirty = true;
	g_preprocess_cp_state.attr_dirty = 0xff;
	g_preprocess_cp_state.bases_dirty = true;
}

inline VertexLoaderBase *GetOrAddLoader(const TVtxDesc &VtxDesc, const VAT &VtxAttr)
{
	VertexLoaderUID uid(VtxDesc, VtxAttr);
	VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
	if (iter == s_vertex_loader_map.end())
	{
		s_vertex_loader_map[uid] = VertexLoaderBase::CreateVertexLoader(VtxDesc, VtxAttr);
		VertexLoaderBase* loader = s_vertex_loader_map[uid].get();
		loader->m_native_vertex_format = GetNativeVertexFormat(loader->m_native_vtx_decl);
		VertexLoaderBase * fallback = loader->GetFallback();
		if (fallback)
		{
			fallback->m_native_vertex_format = GetNativeVertexFormat(fallback->m_native_vtx_decl);
		}
		INCSTAT(stats.numVertexLoaders);
		return loader;
	}
	return iter->second.get();
}

void GetVertexSizeAndComponents(const VertexLoaderParameters &parameters, u32 &vertexsize, u32 &components)
{
	if (parameters.needloaderrefresh)
	{
		s_cpu_loaders[parameters.vtx_attr_group] = GetOrAddLoader(*parameters.VtxDesc, *parameters.VtxAttr);
	}
	vertexsize = s_cpu_loaders[parameters.vtx_attr_group]->m_VertexSize;
	components = s_cpu_loaders[parameters.vtx_attr_group]->m_native_components;
}

inline void UpdateLoader(const VertexLoaderParameters &parameters)
{
	g_main_cp_state.vertex_loaders[parameters.vtx_attr_group] = GetOrAddLoader(*parameters.VtxDesc, *parameters.VtxAttr);
	g_main_cp_state.last_id = parameters.vtx_attr_group;
}

bool ConvertVertices(VertexLoaderParameters &parameters, u32 &readsize, u32 &writesize)
{
	if (parameters.needloaderrefresh)
	{
		UpdateLoader(parameters);
	}
	auto loader = g_main_cp_state.vertex_loaders[parameters.vtx_attr_group];
	if (!loader->EnvironmentIsSupported())
	{
		loader = loader->GetFallback();
	}
	readsize = parameters.count * loader->m_VertexSize;
	if (parameters.buf_size < readsize)
		return false;
	if (parameters.skip_draw)
	{
		return true;
	}
	// Lookup pointers for any vertex arrays.
	UpdateVertexArrayPointers();
	NativeVertexFormat *nativefmt = loader->m_native_vertex_format;
	// Flush if our vertex format is different from the currently set.
	if (s_current_vtx_fmt != nullptr && s_current_vtx_fmt != nativefmt)
	{
		VertexManagerBase::Flush();
	}
	s_current_vtx_fmt = nativefmt;
	g_current_components = loader->m_native_components;
	VertexManagerBase::PrepareForAdditionalData(parameters.primitive, parameters.count, loader->m_native_stride);
	parameters.destination = VertexManagerBase::s_pCurBufferPointer;		
	s32 finalcount = loader->RunVertices(parameters);
	writesize = loader->m_native_stride * finalcount;
	IndexGenerator::AddIndices(parameters.primitive, finalcount);
	ADDSTAT(stats.thisFrame.numPrims, finalcount);
	INCSTAT(stats.thisFrame.numPrimitiveJoins);
	return true;
}

int GetVertexSize(const VertexLoaderParameters &parameters)
{
	if (parameters.needloaderrefresh)
	{
		UpdateLoader(parameters);
	}
	return g_main_cp_state.vertex_loaders[parameters.vtx_attr_group]->m_VertexSize;
}

}  // namespace