コード例 #1
0
/* ************************************************************************* */
TEST( StereoFactor, singlePoint)
{
  NonlinearFactorGraph graph;

  graph.add(NonlinearEquality<Pose3>(X(1), camera1));

  StereoPoint2 measurement(320, 320.0-50, 240);
  // arguments: measurement, sigma, cam#, measurement #, K, baseline (m)
  graph.add(GenericStereoFactor<Pose3, Point3>(measurement, model, X(1), L(1), K));

  // Create a configuration corresponding to the ground truth
  Values values;
  values.insert(X(1), camera1); // add camera at z=6.25m looking towards origin

  Point3 l1(0, 0, 0);
  values.insert(L(1), l1);   // add point at origin;

  GaussNewtonOptimizer optimizer(graph, values);

  // We expect the initial to be zero because config is the ground truth
  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);

  // Iterate once, and the config should not have changed
  optimizer.iterate();
  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);

  // Complete solution
  optimizer.optimize();

  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-6);
}
コード例 #2
0
int main(const int argc, const char *argv[]) {

  // Read graph from file
  string g2oFile;
  if (argc < 2)
    g2oFile = findExampleDataFile("noisyToyGraph.txt");
  else
    g2oFile = argv[1];

  NonlinearFactorGraph::shared_ptr graph;
  Values::shared_ptr initial;
  boost::tie(graph, initial) = readG2o(g2oFile);

  // Add prior on the pose having index (key) = 0
  NonlinearFactorGraph graphWithPrior = *graph;
  noiseModel::Diagonal::shared_ptr priorModel = //
      noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
  graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
  graphWithPrior.print();

  std::cout << "Computing LAGO estimate" << std::endl;
  Values estimateLago = lago::initialize(graphWithPrior);
  std::cout << "done!" << std::endl;

  if (argc < 3) {
    estimateLago.print("estimateLago");
  } else {
    const string outputFile = argv[2];
    std::cout << "Writing results to file: " << outputFile << std::endl;
    writeG2o(*graph, estimateLago, outputFile);
    std::cout << "done! " << std::endl;
  }

  return 0;
}
コード例 #3
0
//*************************************************************************
TEST (EssentialMatrixFactor2, extraMinimization) {
    // Additional test with camera moving in positive X direction

    // We start with a factor graph and add constraints to it
    // Noise sigma is 1, assuming pixel measurements
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < data.number_tracks(); i++)
        graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2, K));

    // Check error at ground truth
    Values truth;
    truth.insert(100, trueE);
    for (size_t i = 0; i < data.number_tracks(); i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(trueE, actual, 1e-1));
    for (size_t i = 0; i < data.number_tracks(); i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
コード例 #4
0
//*************************************************************************
TEST (EssentialMatrixFactor3, minimization) {

    // As before, we start with a factor graph and add constraints to it
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        // but now we specify the rotation bRc
        graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), cRb, model2));

    // Check error at ground truth
    Values truth;
    truth.insert(100, bodyE);
    for (size_t i = 0; i < 5; i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(bodyE, actual, 1e-1));
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
コード例 #5
0
ファイル: testDataset.cpp プロジェクト: DForger/gtsam
/* ************************************************************************* */
TEST( dataSet, readG2oTukey)
{
  const string g2oFile = findExampleDataFile("pose2example");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  bool is3D = false;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY);

  noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
  SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);

  NonlinearFactorGraph expectedGraph;
  expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
  expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
  expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
  expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
  expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
  expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
  expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
  expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
  expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
  expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
コード例 #6
0
/* ************************************************************************** */
TEST(JointLimitFactorPose2Vector, optimization_2) {
  // over down limit

  // settings
  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(5, 0.001);
  noiseModel::Gaussian::shared_ptr prior_model = noiseModel::Isotropic::Sigma(5, 1000);
  Key qkey = Symbol('x', 0);
  Vector5 dlimit = (Vector5() << 0, 0, 0, -5.0, -10.0).finished();
  Vector5 ulimit = (Vector5() << 0, 0, 0, 5, 10.0).finished();
  Vector5 thresh = (Vector5() << 0, 0, 0, 2.0, 2.0).finished();

  Pose2Vector conf(Pose2(1, -2, 3), Vector2(-10.0, -10.0));

  NonlinearFactorGraph graph;
  graph.add(JointLimitFactorPose2Vector(qkey, cost_model, dlimit, ulimit, thresh));
  graph.add(PriorFactor<Pose2Vector>(qkey, conf, prior_model));
  Values init_values;
  init_values.insert(qkey, conf);

  GaussNewtonParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  GaussNewtonOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  Vector conf_limit = (Vector(2) << -3.0, -8.0).finished();
  EXPECT(assert_equal(conf_limit, results.at<Pose2Vector>(qkey).configuration(), 1e-6));
}
コード例 #7
0
ファイル: NonlinearISAM.cpp プロジェクト: gburachas/gtsam_pcl
/* ************************************************************************* */
void NonlinearISAM::update(const NonlinearFactorGraph& newFactors,
		const Values& initialValues) {

  if(newFactors.size() > 0) {

    // Reorder and relinearize every reorderInterval updates
    if(reorderInterval_ > 0 && ++reorderCounter_ >= reorderInterval_) {
      reorder_relinearize();
      reorderCounter_ = 0;
    }

    factors_.push_back(newFactors);

    // Linearize new factors and insert them
    // TODO: optimize for whole config?
    linPoint_.insert(initialValues);

    // Augment ordering
    // TODO: allow for ordering constraints within the new variables
    // FIXME: should just loop over new values
    BOOST_FOREACH(const NonlinearFactorGraph::sharedFactor& factor, newFactors)
      BOOST_FOREACH(Key key, factor->keys())
        ordering_.tryInsert(key, ordering_.nVars()); // will do nothing if already present

    boost::shared_ptr<GaussianFactorGraph> linearizedNewFactors = newFactors.linearize(linPoint_, ordering_);

    // Update ISAM
    isam_.update(*linearizedNewFactors);
  }
}
コード例 #8
0
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {

	// create a hard constraint
  Symbol key1('x',1);
	Pose2 feasible1(1.0, 2.0, 3.0);

	// initialize away from the ideal
	Values init;
	Pose2 initPose(0.0, 2.0, 3.0);
	init.insert(key1, initPose);

	double error_gain = 500.0;
	PoseNLE nle(key1, feasible1, error_gain);

	// create a soft prior that conflicts
	PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));

	// add to a graph
	NonlinearFactorGraph graph;
	graph.add(nle);
	graph.add(prior);

	// optimize
	Ordering ordering;
	ordering.push_back(key1);
  Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();

	// verify
	Values expected;
	expected.insert(key1, feasible1);
	EXPECT(assert_equal(expected, actual));
}
コード例 #9
0
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize ) {
  Symbol key1('x',1);
	Pose2 feasible1(1.0, 2.0, 3.0);
	double error_gain = 500.0;
	PoseNLE nle(key1, feasible1, error_gain);

	// add to a graph
	NonlinearFactorGraph graph;
	graph.add(nle);

	// initialize away from the ideal
	Pose2 initPose(0.0, 2.0, 3.0);
	Values init;
	init.insert(key1, initPose);

	// optimize
	Ordering ordering;
	ordering.push_back(key1);
	Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();

	// verify
	Values expected;
	expected.insert(key1, feasible1);
	EXPECT(assert_equal(expected, result));
}
コード例 #10
0
/* ************************************************************************* */
TEST(DoglegOptimizer, Iterate) {
  // really non-linear factor graph
  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();

  // config far from minimum
  Point2 x0(3,0);
  Values config;
  config.insert(X(1), x0);

  double Delta = 1.0;
  for(size_t it=0; it<10; ++it) {
    GaussianBayesNet gbn = *fg.linearize(config)->eliminateSequential();
    // Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
    double nonlinearError = fg.error(config);
    double linearError = GaussianFactorGraph(gbn).error(config.zeroVectors());
    DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
//    cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
    VectorValues dx_u = gbn.optimizeGradientSearch();
    VectorValues dx_n = gbn.optimize();
    DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, gbn, fg, config, fg.error(config));
    Delta = result.Delta;
    EXPECT(result.f_error < fg.error(config)); // Check that error decreases
    Values newConfig(config.retract(result.dx_d));
    config = newConfig;
    DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
  }
}
コード例 #11
0
/* ************************************************************************** */
TEST(GaussianPriorWorkspacePoseArm, optimization) {

  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(6, 0.1);

  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  ArmModel arm = ArmModel(Arm(2, a, alpha, d), BodySphereVector());
  Pose3 des = Pose3(Rot3(), Point3(2, 0, 0));

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << 0, 0).finished();
  Vector qinit = (Vector(2) << M_PI/2, M_PI/2).finished();

  NonlinearFactorGraph graph;
  graph.add(GaussianPriorWorkspacePoseArm(qkey, arm, 1, des, cost_model));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
コード例 #12
0
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
	// create a single-node graph with a soft and hard constraint to
	// ensure that the hard constraint overrides the soft constraint
	Point2 truth_pt(1.0, 2.0);
  Symbol key('x',1);
	double mu = 10.0;
	eq2D::UnaryEqualityConstraint::shared_ptr constraint(
			new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));

	Point2 badPt(100.0, -200.0);
	simulated2D::Prior::shared_ptr factor(
			new simulated2D::Prior(badPt, soft_model, key));

	NonlinearFactorGraph graph;
	graph.push_back(constraint);
	graph.push_back(factor);

	Values initValues;
	initValues.insert(key, badPt);

	// verify error values
	EXPECT(constraint->active(initValues));

	Values expected;
	expected.insert(key, truth_pt);
	EXPECT(constraint->active(expected));
	EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);

	Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
	EXPECT(assert_equal(expected, actual, tol));
}
コード例 #13
0
//*************************************************************************
TEST (EssentialMatrixFactor2, minimization) {
    // Here we want to optimize for E and inverse depths at the same time

    // We start with a factor graph and add constraints to it
    // Noise sigma is 1cm, assuming metric measurements
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2));

    // Check error at ground truth
    Values truth;
    truth.insert(100, trueE);
    for (size_t i = 0; i < 5; i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(trueE, actual, 1e-1));
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
コード例 #14
0
int main(int argc, char* argv[]) {
  // parse options and read BAL file
  SfM_data db = preamble(argc, argv);

  // Build graph using conventional GeneralSFMFactor
  NonlinearFactorGraph graph;
  for (size_t j = 0; j < db.number_tracks(); j++) {
    BOOST_FOREACH (const SfM_Measurement& m, db.tracks[j].measurements) {
      size_t i = m.first;
      Point2 z = m.second;
      Pose3_ camTnav_(C(i));
      Cal3Bundler_ calibration_(K(i));
      Point3_ nav_point_(P(j));
      graph.addExpressionFactor(
          gNoiseModel, z,
          uncalibrate(calibration_,  // now using transform_from !!!:
                      project(transform_from(camTnav_, nav_point_))));
    }
  }

  Values initial;
  size_t i = 0, j = 0;
  BOOST_FOREACH (const SfM_Camera& camera, db.cameras) {
    initial.insert(C(i), camera.pose().inverse());  // inverse !!!
    initial.insert(K(i), camera.calibration());
    i += 1;
  }
  BOOST_FOREACH (const SfM_Track& track, db.tracks)
    initial.insert(P(j++), track.p);

  bool separateCalibration = true;
  return optimize(db, graph, initial, separateCalibration);
}
コード例 #15
0
ファイル: CameraResectioning.cpp プロジェクト: DForger/gtsam
/*******************************************************************************
 * Camera: f = 1, Image: 100x100, center: 50, 50.0
 * Pose (ground truth): (Xw, -Yw, -Zw, [0,0,2.0]')
 * Known landmarks:
 *    3D Points: (10,10,0) (-10,10,0) (-10,-10,0) (10,-10,0)
 * Perfect measurements:
 *    2D Point:  (55,45)   (45,45)    (45,55)     (55,55)
 *******************************************************************************/
int main(int argc, char* argv[]) {
  /* read camera intrinsic parameters */
  Cal3_S2::shared_ptr calib(new Cal3_S2(1, 1, 0, 50, 50));

  /* 1. create graph */
  NonlinearFactorGraph graph;

  /* 2. add factors to the graph */
  // add measurement factors
  SharedDiagonal measurementNoise = Diagonal::Sigmas((Vector(2) << 0.5, 0.5));
  boost::shared_ptr<ResectioningFactor> factor;
  graph.push_back(
      boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
          Point2(55, 45), Point3(10, 10, 0)));
  graph.push_back(
      boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
          Point2(45, 45), Point3(-10, 10, 0)));
  graph.push_back(
      boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
          Point2(45, 55), Point3(-10, -10, 0)));
  graph.push_back(
      boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
          Point2(55, 55), Point3(10, -10, 0)));

  /* 3. Create an initial estimate for the camera pose */
  Values initial;
  initial.insert(X(1),
      Pose3(Rot3(1, 0, 0, 0, -1, 0, 0, 0, -1), Point3(0, 0, 2)));

  /* 4. Optimize the graph using Levenberg-Marquardt*/
  Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
  result.print("Final result:\n");

  return 0;
}
コード例 #16
0
/* ************************************************************************* */
NonlinearFactorGraph planarSLAMGraph() {
  NonlinearFactorGraph graph;

  // Prior on pose x1 at the origin.
  Pose2 prior(0.0, 0.0, 0.0);
  auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(x1, prior, priorNoise));

  // Two odometry factors
  Pose2 odometry(2.0, 0.0, 0.0);
  auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
  graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
  graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));

  // Add Range-Bearing measurements to two different landmarks
  auto measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
  Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
       bearing32 = Rot2::fromDegrees(90);
  double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
  graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
  graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
  graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));

  return graph;
}
コード例 #17
0
ファイル: testGoalFactorArm.cpp プロジェクト: gtrll/gpmp2
/* ************************************************************************** */
TEST(GoalFactorArm, optimization_1) {

  // use optimization to solve inverse kinematics
  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(3, 0.1);

  // 2 link simple example
  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  Arm arm(2, a, alpha, d);
  Point3 goal(1.414213562373095, 1.414213562373095, 0);

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << M_PI/4.0, 0).finished();
  Vector qinit = (Vector(2) << 0, 0).finished();

  NonlinearFactorGraph graph;
  graph.add(GoalFactorArm(qkey, cost_model, arm, goal));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
コード例 #18
0
/* ************************************************************************* */
TEST( ConcurrentIncrementalSmootherDL, synchronize_1 )
{
    // Create a set of optimizer parameters
    ISAM2Params parameters;
    parameters.optimizationParams = ISAM2DoglegParams();
//  parameters.maxIterations = 1;

    // Create a Concurrent Batch Smoother
    ConcurrentIncrementalSmoother smoother(parameters);

    // Create a simple separator *from* the filter
    NonlinearFactorGraph smootherFactors, filterSumarization;
    Values smootherValues, filterSeparatorValues;
    filterSeparatorValues.insert(1, Pose3().compose(poseError));
    filterSeparatorValues.insert(2, filterSeparatorValues.at<Pose3>(1).compose(poseOdometry).compose(poseError));

    filterSumarization.push_back(LinearContainerFactor(PriorFactor<Pose3>(1, poseInitial, noisePrior).linearize(filterSeparatorValues), filterSeparatorValues));
    filterSumarization.push_back(LinearContainerFactor(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery).linearize(filterSeparatorValues), filterSeparatorValues));

    // Create expected values: the smoother output will be empty for this case
    NonlinearFactorGraph expectedSmootherSummarization;
    Values expectedSmootherSeparatorValues;

    NonlinearFactorGraph actualSmootherSummarization;
    Values actualSmootherSeparatorValues;
    smoother.presync();
    smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
    smoother.synchronize(smootherFactors, smootherValues, filterSumarization, filterSeparatorValues);
    smoother.postsync();

    // Check
    CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
    CHECK(assert_equal(expectedSmootherSeparatorValues, actualSmootherSeparatorValues, 1e-6));


    // Update the smoother
    smoother.update();

    // Check the factor graph. It should contain only the filter-provided factors
    NonlinearFactorGraph expectedFactorGraph = filterSumarization;
    NonlinearFactorGraph actualFactorGraph = smoother.getFactors();
    CHECK(assert_equal(expectedFactorGraph, actualFactorGraph, 1e-6));

    // Check the optimized value of smoother state
    NonlinearFactorGraph allFactors;
    allFactors.push_back(filterSumarization);
    Values allValues;
    allValues.insert(filterSeparatorValues);
    Values expectedValues = BatchOptimize(allFactors, allValues,1);
    Values actualValues = smoother.calculateEstimate();
    CHECK(assert_equal(expectedValues, actualValues, 1e-6));

    // Check the linearization point. The separator should remain identical to the filter provided values
    Values expectedLinearizationPoint = filterSeparatorValues;
    Values actualLinearizationPoint = smoother.getLinearizationPoint();
    CHECK(assert_equal(expectedLinearizationPoint, actualLinearizationPoint, 1e-6));
}
コード例 #19
0
/* ************************************************************************* */
TEST(Marginals, order) {
  NonlinearFactorGraph fg;
  fg += PriorFactor<Pose2>(0, Pose2(), noiseModel::Unit::Create(3));
  fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0,0), noiseModel::Unit::Create(3));
  fg += BetweenFactor<Pose2>(1, 2, Pose2(1,0,0), noiseModel::Unit::Create(3));
  fg += BetweenFactor<Pose2>(2, 3, Pose2(1,0,0), noiseModel::Unit::Create(3));

  Values vals;
  vals.insert(0, Pose2());
  vals.insert(1, Pose2(1,0,0));
  vals.insert(2, Pose2(2,0,0));
  vals.insert(3, Pose2(3,0,0));

  vals.insert(100, Point2(0,1));
  vals.insert(101, Point2(1,1));

  fg += BearingRangeFactor<Pose2,Point2>(0, 100,
    vals.at<Pose2>(0).bearing(vals.at<Point2>(100)),
    vals.at<Pose2>(0).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
  fg += BearingRangeFactor<Pose2,Point2>(0, 101,
    vals.at<Pose2>(0).bearing(vals.at<Point2>(101)),
    vals.at<Pose2>(0).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));

  fg += BearingRangeFactor<Pose2,Point2>(1, 100,
    vals.at<Pose2>(1).bearing(vals.at<Point2>(100)),
    vals.at<Pose2>(1).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
  fg += BearingRangeFactor<Pose2,Point2>(1, 101,
    vals.at<Pose2>(1).bearing(vals.at<Point2>(101)),
    vals.at<Pose2>(1).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));

  fg += BearingRangeFactor<Pose2,Point2>(2, 100,
    vals.at<Pose2>(2).bearing(vals.at<Point2>(100)),
    vals.at<Pose2>(2).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
  fg += BearingRangeFactor<Pose2,Point2>(2, 101,
    vals.at<Pose2>(2).bearing(vals.at<Point2>(101)),
    vals.at<Pose2>(2).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));

  fg += BearingRangeFactor<Pose2,Point2>(3, 100,
    vals.at<Pose2>(3).bearing(vals.at<Point2>(100)),
    vals.at<Pose2>(3).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
  fg += BearingRangeFactor<Pose2,Point2>(3, 101,
    vals.at<Pose2>(3).bearing(vals.at<Point2>(101)),
    vals.at<Pose2>(3).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));

  Marginals marginals(fg, vals);
  KeySet set = fg.keys();
  FastVector<Key> keys(set.begin(), set.end());
  JointMarginal joint = marginals.jointMarginalCovariance(keys);

  LONGS_EQUAL(3, (long)joint(0,0).rows());
  LONGS_EQUAL(3, (long)joint(1,1).rows());
  LONGS_EQUAL(3, (long)joint(2,2).rows());
  LONGS_EQUAL(3, (long)joint(3,3).rows());
  LONGS_EQUAL(2, (long)joint(100,100).rows());
  LONGS_EQUAL(2, (long)joint(101,101).rows());
}
コード例 #20
0
/* ************************************************************************* */
int main (int argc, char* argv[]) {

  // Find default file, but if an argument is given, try loading a file
  string filename = findExampleDataFile("dubrovnik-3-7-pre");
  if (argc>1) filename = string(argv[1]);

  // Load the SfM data from file
  SfM_data mydata;
  assert(readBAL(filename, mydata));
  cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();

  // Create a factor graph
  NonlinearFactorGraph graph;

  // We share *one* noiseModel between all projection factors
  noiseModel::Isotropic::shared_ptr noise =
      noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Add measurements to the factor graph
  size_t j = 0;
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
    BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
      size_t i = m.first;
      Point2 uv = m.second;
      graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
    }
    j += 1;
  }

  // Add a prior on pose x1. This indirectly specifies where the origin is.
  // and a prior on the position of the first landmark to fix the scale
  graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0],  noiseModel::Isotropic::Sigma(9, 0.1)));
  graph.push_back(PriorFactor<Point3>    (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));

  // Create initial estimate
  Values initial;
  size_t i = 0; j = 0;
  BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks)    initial.insert(P(j++), track.p);

  /* Optimize the graph and print results */
  Values result;
  try {
    LevenbergMarquardtParams params;
    params.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer lm(graph, initial, params);
    result = lm.optimize();
  } catch (exception& e) {
    cout << e.what();
  }
  cout << "final error: " << graph.error(result) << endl;

  return 0;
}
コード例 #21
0
/* ************************************************************************* */
int main(int argc, char* argv[]) {

  // Define the camera calibration parameters
  Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));

  // Define the camera observation noise model
  noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Create the set of ground-truth landmarks
  vector<Point3> points = createPoints();

  // Create the set of ground-truth poses
  vector<Pose3> poses = createPoses();

  // Create a factor graph
  NonlinearFactorGraph graph;

  // Add a prior on pose x1. This indirectly specifies where the origin is.
  noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
  graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph

  // Simulated measurements from each camera pose, adding them to the factor graph
  for (size_t i = 0; i < poses.size(); ++i) {
    for (size_t j = 0; j < points.size(); ++j) {
      SimpleCamera camera(poses[i], *K);
      Point2 measurement = camera.project(points[j]);
      graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
    }
  }

  // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
  // Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
  // between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
  noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
  graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
  graph.print("Factor Graph:\n");

  // Create the data structure to hold the initial estimate to the solution
  // Intentionally initialize the variables off from the ground truth
  Values initialEstimate;
  for (size_t i = 0; i < poses.size(); ++i)
    initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
  for (size_t j = 0; j < points.size(); ++j)
    initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
  initialEstimate.print("Initial Estimates:\n");

  /* Optimize the graph and print results */
  Values result = DoglegOptimizer(graph, initialEstimate).optimize();
  result.print("Final results:\n");

  return 0;
}
コード例 #22
0
/* ************************************************************************* */
int main(int argc, char* argv[]) {

  // Create the set of ground-truth
  vector<Point3> points = createPoints();
  vector<Pose3> poses = createPoses();

  // Create the factor graph
  NonlinearFactorGraph graph;

  // Add a prior on pose x1.
  noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
  graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));

  // Simulated measurements from each camera pose, adding them to the factor graph
  Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
  noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
  for (size_t i = 0; i < poses.size(); ++i) {
    for (size_t j = 0; j < points.size(); ++j) {
      SimpleCamera camera(poses[i], K);
      Point2 measurement = camera.project(points[j]);
      // The only real difference with the Visual SLAM example is that here we use a
      // different factor type, that also calculates the Jacobian with respect to calibration
      graph.push_back(GeneralSFMFactor2<Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)));
    }
  }

  // Add a prior on the position of the first landmark.
  noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
  graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph

  // Add a prior on the calibration.
  noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 0.1, 100, 100).finished());
  graph.push_back(PriorFactor<Cal3_S2>(Symbol('K', 0), K, calNoise));

  // Create the initial estimate to the solution
  // now including an estimate on the camera calibration parameters
  Values initialEstimate;
  initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
  for (size_t i = 0; i < poses.size(); ++i)
    initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
  for (size_t j = 0; j < points.size(); ++j)
    initialEstimate.insert<Point3>(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15));

  /* Optimize the graph and print results */
  Values result = DoglegOptimizer(graph, initialEstimate).optimize();
  result.print("Final results:\n");

  return 0;
}
コード例 #23
0
gtsam::NonlinearFactorGraph Matcher2D::findLocalLoopClosure(
  const PoseD slam_pose, LaserScan2D& scan) {

  NonlinearFactorGraph graph;
#if 0
  // get looped index
  vector<LoopResult2d> loop_result;
  loop_result = this->findLoopClosure(scan);

  // perform small EM only after init
  if (local_smallEM_.flag_init) {
    for (size_t i = 0; i < loop_result.size(); i++) {
      Pose2 relpose = loop_result[i].delta_pose;
      pair<size_t, size_t> relidx = make_pair(loop_result[i].loop_idx, pose_count_);
      // inlier
      if (pose_count_ - loop_result[i].loop_idx > setting_.local_loop_interval &&
          local_smallEM_.perform(relpose, relidx, curr_values_, isam_.getFactorsUnsafe())) {

        cout << "local loop detected! " << endl;
        cout << "robot_" << ID_ << ": [" << loop_result[i].loop_idx << ", " << pose_count_ << "]" << endl;
        cout << "Press Enter to continue ... " << endl;
        cin.ignore(1);

        // matched: insert between robot factor
        graph.push_back(BetweenFactor<Pose2>(Symbol(ID_, loop_result[i].loop_idx), Symbol(ID_, pose_count_),
            relpose, setting_.loop_default_model));
      }
    }

  } else {
    // only init small EM after certain count
    if (local_measure_poses_.size() >= setting_.local_loop_count_smallEM) {
      local_smallEM_.init(local_measure_poses_, local_measure_index_, Pose2());
      local_measure_poses_.clear();
      local_measure_index_.clear();

    // insert in local cache
    } else {
      for (size_t i = 0; i < loop_result.size(); i++) {
        local_measure_poses_.push_back(loop_result[i].delta_pose);
        local_measure_index_.push_back(make_pair(loop_result[i].loop_idx, pose_count_));
      }
    }
  }
#endif
  return graph;
}
コード例 #24
0
int main(int argc, char** argv) {

  // 1. Create a factor graph container and add factors to it
  NonlinearFactorGraph graph;

  // 2a. Add a prior on the first pose, setting it to the origin
  // A prior factor consists of a mean and a noise model (covariance matrix)
  Pose2 prior(0.0, 0.0, 0.0); // prior at origin
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(1, prior, priorNoise));

  // 2b. Add odometry factors
  // For simplicity, we will use the same noise model for each odometry factor
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
  // Create odometry (Between) factors between consecutive poses
  graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise));
  graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
  graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
  graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));

  // 2c. Add the loop closure constraint
  // This factor encodes the fact that we have returned to the same pose. In real systems,
  // these constraints may be identified in many ways, such as appearance-based techniques
  // with camera images.
  // We will use another Between Factor to enforce this constraint, with the distance set to zero,
  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
  graph.add(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
  graph.print("\nFactor Graph:\n"); // print


  // 3. Create the data structure to hold the initialEstimate estimate to the solution
  // For illustrative purposes, these have been deliberately set to incorrect values
  Values initialEstimate;
  initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
  initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
  initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
  initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
  initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8));
  initialEstimate.print("\nInitial Estimate:\n"); // print

  // 4. Single Step Optimization using Levenberg-Marquardt
  LevenbergMarquardtParams parameters;
  parameters.verbosity = NonlinearOptimizerParams::ERROR;
  parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
  parameters.linearSolverType = SuccessiveLinearizationParams::CONJUGATE_GRADIENT;

  {
    parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
    LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
    Values result = optimizer.optimize();
    result.print("Final Result:\n");
    cout << "subgraph solver final error = " << graph.error(result) << endl;
  }

  return 0;
}
コード例 #25
0
int main(int argc, char** argv) {

    // 1. Create a factor graph container and add factors to it
    NonlinearFactorGraph graph;

    // 2a. Add odometry factors
    // For simplicity, we will use the same noise model for each odometry factor
    noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
    // Create odometry (Between) factors between consecutive poses
    graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
    graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));

    // 2b. Add "GPS-like" measurements
    // We will use our custom UnaryFactor for this.
    noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
    graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
    graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
    graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
    graph.print("\nFactor Graph:\n"); // print

    // 3. Create the data structure to hold the initialEstimate estimate to the solution
    // For illustrative purposes, these have been deliberately set to incorrect values
    Values initialEstimate;
    initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
    initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
    initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
    initialEstimate.print("\nInitial Estimate:\n"); // print

    // 4. Optimize using Levenberg-Marquardt optimization. The optimizer
    // accepts an optional set of configuration parameters, controlling
    // things like convergence criteria, the type of linear system solver
    // to use, and the amount of information displayed during optimization.
    // Here we will use the default set of parameters.  See the
    // documentation for the full set of parameters.
    LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
    Values result = optimizer.optimize();
    result.print("Final Result:\n");

    // 5. Calculate and print marginal covariances for all variables
    Marginals marginals(graph, result);
    cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
    cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
    cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;

    return 0;
}
コード例 #26
0
ファイル: testDataset.cpp プロジェクト: DForger/gtsam
/* ************************************************************************* */
TEST( dataSet, readG2o3D)
{
  const string g2oFile = findExampleDataFile("pose3example");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  bool is3D = true;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D);

  Values expectedValues;
  Rot3 R0 = Rot3::quaternion(1.000000, 0.000000, 0.000000, 0.000000 );
  Point3 p0 = Point3(0.000000, 0.000000, 0.000000);
  expectedValues.insert(0, Pose3(R0, p0));

  Rot3 R1 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  Point3 p1 = Point3(1.001367, 0.015390, 0.004948);
  expectedValues.insert(1, Pose3(R1, p1));

  Rot3 R2 = Rot3::quaternion(0.421446, -0.351729, -0.597838, 0.584174 );
  Point3 p2 = Point3(1.993500, 0.023275, 0.003793);
  expectedValues.insert(2, Pose3(R2, p2));

  Rot3 R3 = Rot3::quaternion(0.067024, 0.331798, -0.200659, 0.919323);
  Point3 p3 = Point3(2.004291, 1.024305, 0.018047);
  expectedValues.insert(3, Pose3(R3, p3));

  Rot3 R4 = Rot3::quaternion(0.765488, -0.035697, -0.462490, 0.445933);
  Point3 p4 = Point3(0.999908, 1.055073, 0.020212);
  expectedValues.insert(4, Pose3(R4, p4));

  EXPECT(assert_equal(expectedValues,*actualValues,1e-5));

  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(6) << 10000.0,10000.0,10000.0,10000.0,10000.0,10000.0));
  NonlinearFactorGraph expectedGraph;

  Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
  Rot3 R01 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  expectedGraph.add(BetweenFactor<Pose3>(0, 1, Pose3(R01,p01), model));

  Point3 p12 = Point3(0.523923, 0.776654, 0.326659);
  Rot3 R12 = Rot3::quaternion(0.105373 , 0.311512, 0.656877, -0.678505 );
  expectedGraph.add(BetweenFactor<Pose3>(1, 2, Pose3(R12,p12), model));

  Point3 p23 = Point3(0.910927, 0.055169, -0.411761);
  Rot3 R23 = Rot3::quaternion(0.568551 , 0.595795, -0.561677, 0.079353 );
  expectedGraph.add(BetweenFactor<Pose3>(2, 3, Pose3(R23,p23), model));

  Point3 p34 = Point3(0.775288, 0.228798, -0.596923);
  Rot3 R34 = Rot3::quaternion(0.542221 , -0.592077, 0.303380, -0.513226 );
  expectedGraph.add(BetweenFactor<Pose3>(3, 4, Pose3(R34,p34), model));

  Point3 p14 = Point3(-0.577841, 0.628016, -0.543592);
  Rot3 R14 = Rot3::quaternion(0.327419 , -0.125250, -0.534379, 0.769122  );
  expectedGraph.add(BetweenFactor<Pose3>(1, 4, Pose3(R14,p14), model));

  Point3 p30 = Point3(-0.623267, 0.086928, 0.773222);
  Rot3 R30 = Rot3::quaternion(0.083672 ,  0.104639, 0.627755, 0.766795  );
  expectedGraph.add(BetweenFactor<Pose3>(3, 0, Pose3(R30,p30), model));

  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
コード例 #27
0
int main(const int argc, const char *argv[]) {

  // Read graph from file
  string g2oFile;
  if (argc < 2)
    g2oFile = findExampleDataFile("pose3example.txt");
  else
    g2oFile = argv[1];

  NonlinearFactorGraph::shared_ptr graph;
  Values::shared_ptr initial;
  bool is3D = true;
  boost::tie(graph, initial) = readG2o(g2oFile, is3D);

  // Add prior on the first key
  NonlinearFactorGraph graphWithPrior = *graph;
  noiseModel::Diagonal::shared_ptr priorModel = //
      noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
  Key firstKey = 0;
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
    std::cout << "Adding prior to g2o file " << std::endl;
    firstKey = key_value.key;
    graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
    break;
  }

  std::cout << "Initializing Pose3 - Riemannian gradient" << std::endl;
  bool useGradient = true;
  Values initialization = InitializePose3::initialize(graphWithPrior, *initial, useGradient);
  std::cout << "done!" << std::endl;

  std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
  std::cout << "initialization error=" <<graph->error(initialization)<< std::endl;

  if (argc < 3) {
    initialization.print("initialization");
  } else {
    const string outputFile = argv[2];
    std::cout << "Writing results to file: " << outputFile  << std::endl;
    writeG2o(*graph, initialization, outputFile);
    std::cout << "done! " << std::endl;
  }
  return 0;
}
コード例 #28
0
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, map_warp ) {
	// get a graph
  NonlinearFactorGraph graph;

	// keys
  Symbol x1('x',1), x2('x',2);
  Symbol l1('l',1), l2('l',2);

	// constant constraint on x1
	Point2 pose1(1.0, 1.0);
	graph.add(eq2D::UnaryEqualityConstraint(pose1, x1));

	SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,0.1);

	// measurement from x1 to l1
	Point2 z1(0.0, 5.0);
	graph.add(simulated2D::Measurement(z1, sigma, x1, l1));

	// measurement from x2 to l2
	Point2 z2(-4.0, 0.0);
	graph.add(simulated2D::Measurement(z2, sigma, x2, l2));

	// equality constraint between l1 and l2
	graph.add(eq2D::PointEqualityConstraint(l1, l2));

	// create an initial estimate
	Values initialEstimate;
	initialEstimate.insert(x1, Point2( 1.0, 1.0));
	initialEstimate.insert(l1, Point2( 1.0, 6.0));
	initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
	initialEstimate.insert(x2, Point2( 0.0, 0.0)); // other pose starts at origin

	// optimize
	Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();

	Values expected;
	expected.insert(x1, Point2(1.0, 1.0));
	expected.insert(l1, Point2(1.0, 6.0));
	expected.insert(l2, Point2(1.0, 6.0));
	expected.insert(x2, Point2(5.0, 6.0));
	CHECK(assert_equal(expected, actual, tol));
}
コード例 #29
0
/* ************************************************************************* */
bool check_smoother(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const IncrementalFixedLagSmoother& smoother, const Key& key) {

  GaussianFactorGraph linearized = *fullgraph.linearize(fullinit);
  VectorValues delta = linearized.optimize();
  Values fullfinal = fullinit.retract(delta);

  Point2 expected = fullfinal.at<Point2>(key);
  Point2 actual = smoother.calculateEstimate<Point2>(key);

  return assert_equal(expected, actual);
}
コード例 #30
0
ファイル: OdometryExample.cpp プロジェクト: haidai/gtsam
int main(int argc, char** argv) {

  // Create an empty nonlinear factor graph
  NonlinearFactorGraph graph;

  // Add a prior on the first pose, setting it to the origin
  // A prior factor consists of a mean and a noise model (covariance matrix)
  Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));

  // Add odometry factors
  Pose2 odometry(2.0, 0.0, 0.0);
  // For simplicity, we will use the same noise model for each odometry factor
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
  // Create odometry (Between) factors between consecutive poses
  graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
  graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
  graph.print("\nFactor Graph:\n"); // print

  // Create the data structure to hold the initialEstimate estimate to the solution
  // For illustrative purposes, these have been deliberately set to incorrect values
  Values initial;
  initial.insert(1, Pose2(0.5, 0.0, 0.2));
  initial.insert(2, Pose2(2.3, 0.1, -0.2));
  initial.insert(3, Pose2(4.1, 0.1, 0.1));
  initial.print("\nInitial Estimate:\n"); // print

  // optimize using Levenberg-Marquardt optimization
  Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
  result.print("Final Result:\n");

  // Calculate and print marginal covariances for all variables
  cout.precision(2);
  Marginals marginals(graph, result);
  cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
  cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
  cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;

  return 0;
}