// static MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) { // root->isLogical() is true now. We care about AND, OR, and NOT. NOR currently scares us. if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) { // We could have AND of AND of AND. Make sure we clean up our children before merging // them. // UNITTEST 11738048 for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } // If any of our children are of the same logical operator that we are, we remove the // child's children and append them to ourselves after we examine all children. std::vector<MatchExpression*> absorbedChildren; for (size_t i = 0; i < root->numChildren();) { MatchExpression* child = root->getChild(i); if (child->matchType() == root->matchType()) { // AND of an AND or OR of an OR. Absorb child's children into ourself. for (size_t j = 0; j < child->numChildren(); ++j) { absorbedChildren.push_back(child->getChild(j)); } // TODO(opt): this is possibly n^2-ish root->getChildVector()->erase(root->getChildVector()->begin() + i); child->getChildVector()->clear(); // Note that this only works because we cleared the child's children delete child; // Don't increment 'i' as the current child 'i' used to be child 'i+1' } else { ++i; } } root->getChildVector()->insert( root->getChildVector()->end(), absorbedChildren.begin(), absorbedChildren.end()); // AND of 1 thing is the thing, OR of 1 thing is the thing. if (1 == root->numChildren()) { MatchExpression* ret = root->getChild(0); root->getChildVector()->clear(); delete root; return ret; } } else if (MatchExpression::NOT == root->matchType()) { // Normalize the rest of the tree hanging off this NOT node. NotMatchExpression* nme = static_cast<NotMatchExpression*>(root); MatchExpression* child = nme->releaseChild(); // normalizeTree(...) takes ownership of 'child', and then // transfers ownership of its return value to 'nme'. nme->resetChild(normalizeTree(child)); } else if (MatchExpression::ELEM_MATCH_VALUE == root->matchType()) { // Just normalize our children. for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } } return root; }
// static MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) { if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) { // We could have AND of AND of AND. Make sure we clean up our children before merging them. for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } // If any of our children are of the same logical operator that we are, we remove the // child's children and append them to ourselves after we examine all children. std::vector<MatchExpression*> absorbedChildren; for (size_t i = 0; i < root->numChildren();) { MatchExpression* child = root->getChild(i); if (child->matchType() == root->matchType()) { // AND of an AND or OR of an OR. Absorb child's children into ourself. for (size_t j = 0; j < child->numChildren(); ++j) { absorbedChildren.push_back(child->getChild(j)); } // TODO(opt): this is possibly n^2-ish root->getChildVector()->erase(root->getChildVector()->begin() + i); child->getChildVector()->clear(); // Note that this only works because we cleared the child's children delete child; // Don't increment 'i' as the current child 'i' used to be child 'i+1' } else { ++i; } } root->getChildVector()->insert( root->getChildVector()->end(), absorbedChildren.begin(), absorbedChildren.end()); // AND of 1 thing is the thing, OR of 1 thing is the thing. if (1 == root->numChildren()) { MatchExpression* ret = root->getChild(0); root->getChildVector()->clear(); delete root; return ret; } } else if (MatchExpression::NOR == root->matchType()) { // First clean up children. for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } // NOR of one thing is NOT of the thing. if (1 == root->numChildren()) { // Detach the child and assume ownership. std::unique_ptr<MatchExpression> child(root->getChild(0)); root->getChildVector()->clear(); // Delete the root when this goes out of scope. std::unique_ptr<NorMatchExpression> ownedRoot(static_cast<NorMatchExpression*>(root)); // Make a NOT to be the new root and transfer ownership of the child to it. auto newRoot = stdx::make_unique<NotMatchExpression>(); newRoot->init(child.release()).transitional_ignore(); return newRoot.release(); } } else if (MatchExpression::NOT == root->matchType()) { // Normalize the rest of the tree hanging off this NOT node. NotMatchExpression* nme = static_cast<NotMatchExpression*>(root); MatchExpression* child = nme->releaseChild(); // normalizeTree(...) takes ownership of 'child', and then // transfers ownership of its return value to 'nme'. nme->resetChild(normalizeTree(child)); } else if (MatchExpression::ELEM_MATCH_OBJECT == root->matchType()) { // Normalize the rest of the tree hanging off this ELEM_MATCH_OBJECT node. ElemMatchObjectMatchExpression* emome = static_cast<ElemMatchObjectMatchExpression*>(root); auto child = emome->releaseChild(); // normalizeTree(...) takes ownership of 'child', and then // transfers ownership of its return value to 'emome'. emome->resetChild(std::unique_ptr<MatchExpression>(normalizeTree(child.release()))); } else if (MatchExpression::ELEM_MATCH_VALUE == root->matchType()) { // Just normalize our children. for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } } else if (MatchExpression::MATCH_IN == root->matchType()) { std::unique_ptr<InMatchExpression> in(static_cast<InMatchExpression*>(root)); // IN of 1 regex is the regex. if (in->getRegexes().size() == 1 && in->getEqualities().empty()) { RegexMatchExpression* childRe = in->getRegexes().begin()->get(); invariant(!childRe->getTag()); // Create a new RegexMatchExpression, because 'childRe' does not have a path. auto re = stdx::make_unique<RegexMatchExpression>(); re->init(in->path(), childRe->getString(), childRe->getFlags()).transitional_ignore(); if (in->getTag()) { re->setTag(in->getTag()->clone()); } return normalizeTree(re.release()); } // IN of 1 equality is the equality. if (in->getEqualities().size() == 1 && in->getRegexes().empty()) { auto eq = stdx::make_unique<EqualityMatchExpression>(); eq->init(in->path(), *(in->getEqualities().begin())).transitional_ignore(); eq->setCollator(in->getCollator()); if (in->getTag()) { eq->setTag(in->getTag()->clone()); } return eq.release(); } return in.release(); } return root; }