int main(int argc, char** argv){ // Initialize classes and configurations ros::init(argc, argv, "findObject"); ObjectFinder f; f.applyAction(); return 0; }
//-------------------------------------------------------------- void ofApp::addObjectFinder(const string &cascadeFilename) { ObjectFinder finder; finder.setup(cascadeFilename); finder.setRescale(.25); finder.setFindBiggestObject(true); finder.getTracker().setSmoothingRate(.3); finders.push_back(move(finder)); }
int main(void) { GetHistogram gh; ObjectFinder of; cv::Mat img1, img2; cv::Mat imgROI; cv::Mat histogram; cv::Mat backProject; img1 = cv::imread("..\\..\\..\\source\\1.jpg"); if(!img1.data) return 0; imgROI = img1(cv::Rect(80,300,35,40)); cv::rectangle(img1,cv::Rect(110,260,35,40),cv::Scalar(0,0,255)); cv::namedWindow("img1"); cv::imshow("img1", img1); //获得imgROI的直方图 histogram = gh.getHueHistogram(imgROI, 65); cv::normalize(histogram,histogram,1.0); of.setHistogram(histogram); //获取并处理第二幅图像 cv::Mat hsv; std::vector<cv::Mat> hue; img2 = cv::imread("..\\..\\..\\source\\2.jpg"); cv::cvtColor(img2, hsv, CV_BGR2HSV); cv::split(hsv, hue); cv::threshold(hue[1], hue[1], 65, 255, cv::THRESH_BINARY);//这个是为了将低饱和度的图像从反向投影结果中剔除 //对于第二幅图进行反向投影,使用第一幅图ROI的直方图 backProject = of.finder(img2); cv::bitwise_and(backProject, hue[1], backProject); cv::namedWindow("backProject"); cv::imshow("backProject",backProject); //均值漂移 cv::Rect rect(110,260,35,40); cv::rectangle(img2, rect, cv::Scalar(0,0,255)); cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01);//最大迭代次数是10,移动距离阈值是0.01 cv::meanShift(backProject,rect,criteria); cv::rectangle(img2, rect, cv::Scalar(0,255,0)); cv::namedWindow("img2"); cv::imshow("img2",img2); cv::waitKey(0); return 0; }
int main(int argc, char *argv[]) { Network yarp; if (!yarp.checkNetwork()) return -1; ResourceFinder rf; rf.setVerbose(true); rf.setDefault("name","objectFinder"); rf.setDefault("camera","left"); rf.setDefault("robot","icub"); rf.setDefaultContext("AffordancesProject"); rf.setDefaultConfigFile("objectFinder.ini"); rf.configure(argc,argv); ObjectFinder objectFinder; return objectFinder.runModule(rf); }
int main() { // Read reference image cv::Mat image= cv::imread("../images/baboon1.jpg"); if (!image.data) return 0; // Define ROI cv::Mat imageROI= image(cv::Rect(110,260,35,40)); cv::rectangle(image, cv::Rect(110,260,35,40), cv::Scalar(0,0,255)); // Display image cv::namedWindow("Image 1"); cv::imshow("Image 1",image); // Get the Hue histogram int minSat=65; ColorHistogram hc; cv::MatND colorhist= hc.getHueHistogram(imageROI, minSat); ObjectFinder finder; finder.setHistogram(colorhist); finder.setThreshold(0.2f); // Second image image= cv::imread("../images/baboon3.jpg"); // Display image cv::namedWindow("Image 2"); cv::imshow("Image 2",image); // Convert to HSV space cv::Mat hsv; cv::cvtColor(image, hsv, CV_BGR2HSV); // Split the image vector<cv::Mat> v; cv::split(hsv,v); // Eliminate pixels with low saturation cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY); cv::namedWindow("Saturation"); cv::imshow("Saturation",v[1]); // Get back-projection of hue histogram int ch[1]={0}; cv::Mat result= finder.find(hsv,0.0f,180.0f,ch,1); cv::namedWindow("Result Hue"); cv::imshow("Result Hue",result); // Eliminate low stauration pixels cv::bitwise_and(result,v[1],result); cv::namedWindow("Result Hue and raw"); cv::imshow("Result Hue and raw",result); cv::Rect rect(110,260,35,40); cv::rectangle(image, rect, cv::Scalar(0,0,255)); cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01); cout << "meanshift= " << cv::meanShift(result,rect,criteria) << endl; cv::rectangle(image, rect, cv::Scalar(0,255,0)); // Display image cv::namedWindow("Image 2 result"); cv::imshow("Image 2 result",image); cv::waitKey(); return 0; }