void LinearCutsGenerator::generateCuts(const OsiSolverInterface &solver, OsiCuts &cs, const CglTreeInfo info) const { //const OsiTMINLPInterface * tmp = dynamic_cast<const OsiTMINLPInterface *>(&solver); OsiTMINLPInterface * nlp = dynamic_cast<OsiTMINLPInterface *>(solver.clone());//const_cast<OsiTMINLPInterface *>(tmp); assert(nlp); OuterApprox oa; //si.writeMps("toto"); int numberRows = nlp->getNumRows(); for(int i = 0 ; i < 5 ; i++){ nlp->resolve(); OsiClpSolverInterface si; oa(*nlp, &si, solver.getColSolution(), true); si.resolve(); OsiCuts cuts; for(std::list<Coin::SmartPtr<CuttingMethod> >::const_iterator i = methods_.begin() ; i != methods_.end() ; i++){ (*i)->cgl->generateCuts(si, cuts, info); } std::vector<OsiRowCut *> mycuts(cuts.sizeRowCuts()); for(int i = 0 ; i < cuts.sizeRowCuts() ; i++){ mycuts[i] = cuts.rowCutPtr(i); cs.insert(*mycuts[i]); } nlp->applyRowCuts(mycuts.size(), const_cast<const OsiRowCut **> (&mycuts[0])); } // Take off slack cuts std::vector<int> kept; int numberRowsNow = nlp->getNumRows(); int * del = new int [numberRowsNow-numberRows]; nlp->resolve(); const double * activity = nlp->getRowActivity(); const double * lb = nlp->getRowLower(); const double * ub = nlp->getRowUpper(); CoinRelFltEq eq(1e-06); //int nDelete=0; for (int i=numberRowsNow -1;i>=numberRows;i--) { if ( !(eq(activity[i], lb[i]) || eq(activity[i], ub[i])) ) cs.eraseRowCut(i - numberRows); } delete [] del; delete nlp; }
/** Runs heuristic*/ int FixAndSolveHeuristic::solution(double & objectiveValue, double * newSolution){ //if(model_->getNodeCount() || model_->getCurrentPassNumber() > 1) return 0; if(model_->getSolutionCount() > 0) return 0; if(model_->getNodeCount() > 1000) return 0; if(model_->getNodeCount() % 100 != 0) return 0; int numberObjects = model_->numberObjects(); OsiObject ** objects = model_->objects(); OsiTMINLPInterface * nlp = dynamic_cast<OsiTMINLPInterface *> (model_->solver()); if(nlp == NULL){ nlp = dynamic_cast<OsiTMINLPInterface *> (setup_->nonlinearSolver()->clone()); } else { nlp = dynamic_cast<OsiTMINLPInterface *>(nlp->clone()); } OsiBranchingInformation info = model_->usefulInformation(); info.solution_ = model_->getColSolution(); int dummy; int nFixed = 0; for(int i = 0 ; i < numberObjects; i++){ if(objects[i]->infeasibility(&info, dummy) == 0.){ objects[i]->feasibleRegion(nlp, &info); nFixed ++; } } if(nFixed < numberObjects / 3) return 0; double cutoff = info.cutoff_; int r_val = doLocalSearch(nlp, newSolution, objectiveValue, cutoff); delete nlp; return r_val; }
/* After a CbcModel::resolve this can return a status -1 no effect 0 treat as optimal 1 as 0 but do not do any more resolves (i.e. no more cuts) 2 treat as infeasible */ int CbcNlpStrategy::status(CbcModel * model, CbcNodeInfo * parent,int whereFrom) { OsiSolverInterface * solver = model->solver();//get solver int feasible = 1; bool solved = true; int returnStatus = -1; BonCbcPartialNodeInfo * bmNodeInfo = dynamic_cast<BonCbcPartialNodeInfo *>(parent); if (!bmNodeInfo) return -1; int seqOfInfeasiblesSize = bmNodeInfo->getSequenceOfInfeasiblesSize(); int seqOfUnsolvedSize = bmNodeInfo->getSequenceOfUnsolvedSize(); if (solver->isAbandoned()) { solved = false; seqOfUnsolvedSize++; ; } else if (solver->isProvenPrimalInfeasible()) { feasible = 0; seqOfInfeasiblesSize++; } if ((seqOfUnsolvedSize==0) || (maxFailure_ == 0) && (maxInfeasible_== 0) || (seqOfInfeasiblesSize==0)) if (feasible && seqOfInfeasiblesSize > 1) { (*model->messageHandler())<<"Feasible node while father was infeasible." <<CoinMessageEol; } if (solved && seqOfUnsolvedSize > 1) { (*model->messageHandler())<<"Solved node while father was unsolved." <<CoinMessageEol; } if (seqOfInfeasiblesSize < maxInfeasible_ && solved && !feasible) { (*model->messageHandler())<<"Branching on infeasible node, sequence of infeasibles size " <<seqOfInfeasiblesSize<<CoinMessageEol; // Have to make sure that we will branch OsiTMINLPInterface * ipopt = dynamic_cast<OsiTMINLPInterface *>(solver); ipopt->forceBranchable(); //change objective value returnStatus = 0; } if (!solved && parent != NULL && seqOfUnsolvedSize <= maxFailure_) { (*model->messageHandler())<<"Branching on unsolved node, sequence of unsolved size "<<seqOfUnsolvedSize<<CoinMessageEol; // Have to make sure that we will branch OsiTMINLPInterface * osiMinlp = dynamic_cast<OsiTMINLPInterface *>(solver); osiMinlp->forceBranchable(); // feasible=1; returnStatus = 0; } if (solver->isAbandoned() && parent != NULL && seqOfUnsolvedSize > maxFailure_) { hasFailed_ = true; OsiTMINLPInterface * osiMinlp = dynamic_cast<OsiTMINLPInterface *>(solver); if (pretendFailIsInfeasible_) { //force infeasible osiMinlp->forceInfeasible(); returnStatus = 2; } else { std::string probName; osiMinlp->getStrParam(OsiProbName,probName); throw osiMinlp->newUnsolvedError(0, osiMinlp->problem(), probName); } } return returnStatus; }
/** Perform a branch-and-bound on given setup.*/ void CouenneBab::branchAndBound (Bonmin::BabSetupBase & s) { double remaining_time = s.getDoubleParameter(Bonmin::BabSetupBase::MaxTime) + CoinCpuTime(); /* Put a link to this into solver.*/ OsiBabSolver * babInfo = dynamic_cast<OsiBabSolver *>(s.continuousSolver()->getAuxiliaryInfo()); assert(babInfo); Bonmin::BabInfo * bonBabInfoPtr = dynamic_cast<Bonmin::BabInfo*>(babInfo); if (bonBabInfoPtr == NULL) { //Replace with a Bonmin::babInfo bonBabInfoPtr = new Bonmin::BabInfo(*babInfo); s.continuousSolver()->setAuxiliaryInfo(bonBabInfoPtr); delete bonBabInfoPtr; bonBabInfoPtr = dynamic_cast<Bonmin::BabInfo*>(s.continuousSolver()->getAuxiliaryInfo()); } bonBabInfoPtr->setBabPtr(this); s.nonlinearSolver()->solver()->setup_global_time_limit(s.getDoubleParameter(Bonmin::BabSetupBase::MaxTime)); OsiSolverInterface * solver = s.continuousSolver()->clone(); delete modelHandler_; modelHandler_ = s.continuousSolver()->messageHandler()->clone(); model_.passInMessageHandler(modelHandler_); model_.assignSolver(solver, true); // s.continuousSolver() = model_.solver(); // if(s.continuousSolver()->objects()!=NULL){ // model_.addObjects(s.continuousSolver()->numberObjects(),s.continuousSolver()->objects()); // } int specOpt = s.getIntParameter(Bonmin::BabSetupBase::SpecialOption); if (specOpt) { model_.setSpecialOptions(specOpt); if (specOpt==16) { Bonmin::CbcNlpStrategy strat(s.getIntParameter(Bonmin::BabSetupBase::MaxFailures), s.getIntParameter(Bonmin::BabSetupBase::MaxInfeasible), s.getIntParameter(Bonmin::BabSetupBase::FailureBehavior)); model_.setStrategy(strat); } } model_.setMaximumCutPasses(s.getIntParameter(Bonmin::BabSetupBase::NumCutPasses)); model_.setMaximumCutPassesAtRoot(s.getIntParameter(Bonmin::BabSetupBase::NumCutPassesAtRoot)); //Setup cutting plane methods for (Bonmin::BabSetupBase::CuttingMethods::iterator i = s.cutGenerators().begin() ; i != s.cutGenerators().end() ; i++) { Bonmin::OaDecompositionBase * oa = dynamic_cast<Bonmin::OaDecompositionBase *>(i->cgl); if (oa && oa->reassignLpsolver()) oa->assignLpInterface(model_.solver()); model_.addCutGenerator(i->cgl,i->frequency,i->id.c_str(), i->normal, i->atSolution); if(i->always){ model_.cutGenerators()[model_.numberCutGenerators()-1] ->setMustCallAgain(true); } } for (Bonmin::BabSetupBase::HeuristicMethods::iterator i = s.heuristics().begin() ; i != s.heuristics().end() ; i++) { CbcHeuristic * heu = i->heuristic; heu->setModel(&model_); model_.addHeuristic(heu, i->id.c_str()); } //need to record solver logLevel here int logLevel = s.continuousSolver()->messageHandler()->logLevel(); //Set true branch-and-bound parameters model_.setLogLevel(s.getIntParameter(Bonmin::BabSetupBase::BabLogLevel)); // Put back solver logLevel model_.solver()->messageHandler()->setLogLevel(logLevel); model_.setPrintFrequency(s.getIntParameter(Bonmin::BabSetupBase::BabLogInterval)); bool ChangedObject = false; //Pass over user set branching priorities to Cbc if (s.continuousSolver()->objects()==NULL) { //assert (s.branchingMethod() == NULL); const OsiTMINLPInterface * nlpSolver = s.nonlinearSolver(); //set priorities, prefered directions... const int * priorities = nlpSolver->getPriorities(); const double * upPsCosts = nlpSolver->getUpPsCosts(); const double * downPsCosts = nlpSolver->getDownPsCosts(); const int * directions = nlpSolver->getBranchingDirections(); bool hasPseudo = (upPsCosts!=NULL); model_.findIntegers(true,hasPseudo); OsiObject ** simpleIntegerObjects = model_.objects(); int numberObjects = model_.numberObjects(); if (priorities != NULL || directions != NULL || hasPseudo) { ChangedObject = true; for (int i = 0 ; i < numberObjects ; i++) { CbcObject * object = dynamic_cast<CbcObject *> (simpleIntegerObjects[i]); int iCol = object->columnNumber(); if (priorities) object->setPriority(priorities[iCol]); if (directions) object->setPreferredWay(directions[iCol]); if (upPsCosts) { CbcSimpleIntegerPseudoCost * pscObject = dynamic_cast<CbcSimpleIntegerPseudoCost*> (object); pscObject->setUpPseudoCost(upPsCosts[iCol]); pscObject->setDownPseudoCost(downPsCosts[iCol]); } } } #if 1 // Now pass user set Sos constraints (code inspired from CoinSolve.cpp) const TMINLP::SosInfo * sos = s.nonlinearSolver()->model()->sosConstraints(); if (!s.getIntParameter(Bonmin::BabSetupBase::DisableSos) && sos && sos->num > 0) { // we have some sos constraints const OsiTMINLPInterface * nlpSolver = s.nonlinearSolver(); const int & numSos = sos->num; (*nlpSolver->messageHandler())<<"Adding "<<sos->num<<" sos constraints." <<CoinMessageEol; CbcObject ** objects = new CbcObject*[numSos]; const int * starts = sos->starts; const int * indices = sos->indices; const char * types = sos->types; const double * weights = sos->weights; //verify if model has user set priorities bool hasPriorities = false; const int * varPriorities = nlpSolver->getPriorities(); int numberObjects = model_.numberObjects(); if (varPriorities) { for (int i = 0 ; i < numberObjects ; i++) { if (varPriorities[i]) { hasPriorities = true; break; } } } const int * sosPriorities = sos->priorities; if (sosPriorities) { for (int i = 0 ; i < numSos ; i++) { if (sosPriorities[i]) { hasPriorities = true; break; } } } for (int i = 0 ; i < numSos ; i++) { int start = starts[i]; int length = starts[i + 1] - start; #ifdef DO_IT_NWAY printf("setting nway object\n"), objects[i] = new CbcNWay(&model_, length, &indices[start], i); objects[i]->setPriority(1); #else objects[i] = new CbcSOS(&model_, length, &indices[start], &weights[start], i, types[i]); objects[i]->setPriority(10); #endif if (hasPriorities && sosPriorities && sosPriorities[i]) { objects[i]->setPriority(sosPriorities[i]); } } model_.addObjects (numSos, objects); for (int i = 0 ; i < numSos ; i++) delete objects[i]; delete [] objects; } #endif //If Setup contains more objects add them to Cbc if (s.objects().size()) { CbcObject ** objects = new CbcObject *[s.objects().size()]; for (unsigned int i = 0 ; i < s.objects().size() ; i++) { objects[i] = dynamic_cast<CbcObject *> (s.objects()[i]); assert(objects[i]); objects[i]->setModel(&model_); } model_.addObjects ((int) s.objects().size(), objects); delete [] objects; } replaceIntegers(model_.objects(), model_.numberObjects()); } else { // Pass in objects to Cbc // Redundant definition of default branching (as Default == User) assert (s.branchingMethod() != NULL); // Add nonlinear and integer objects (need to add OsiSOS) model_.addObjects (s.continuousSolver () -> numberObjects (), s.continuousSolver () -> objects ()); // Now model_ has only CouenneObjects and SOS objects // for (int i=0; i<nco; i++) // if (!(dynamic_cast <CbcSimpleInteger *> (s.continuousSolver () -> objects () [i]))) // model_ . objects () [nRealObj++] = s.continuousSolver () -> objects () [i] -> clone (); CbcBranchDefaultDecision branch; s.branchingMethod()->setSolver(model_.solver()); BonChooseVariable * strong2 = dynamic_cast<BonChooseVariable *>(s.branchingMethod()); if (strong2) strong2->setCbcModel(&model_); branch.setChooseMethod(*s.branchingMethod()); model_.setBranchingMethod(&branch); // prevent duplicating object when copying in CbcModel.cpp model_.solver()->deleteObjects(); } model_.setDblParam(CbcModel::CbcCutoffIncrement, s.getDoubleParameter(Bonmin::BabSetupBase::CutoffDecr)); model_.setCutoff(s.getDoubleParameter(Bonmin::BabSetupBase::Cutoff) + CUTOFF_TOL); model_.setDblParam(CbcModel::CbcAllowableGap, s.getDoubleParameter(Bonmin::BabSetupBase::AllowableGap)); model_.setDblParam(CbcModel::CbcAllowableFractionGap, s.getDoubleParameter(Bonmin::BabSetupBase::AllowableFractionGap)); // Definition of node selection strategy if (s.nodeComparisonMethod()==Bonmin::BabSetupBase::bestBound) { CbcCompareObjective compare; model_.setNodeComparison(compare); } else if (s.nodeComparisonMethod()==Bonmin::BabSetupBase::DFS) { CbcCompareDepth compare; model_.setNodeComparison(compare); } else if (s.nodeComparisonMethod()==Bonmin::BabSetupBase::BFS) { CbcCompareDefault compare; compare.setWeight(0.0); model_.setNodeComparison(compare); } else if (s.nodeComparisonMethod()==Bonmin::BabSetupBase::dynamic) { CbcCompareDefault compare; model_.setNodeComparison(compare); } else if (s.nodeComparisonMethod()==Bonmin::BabSetupBase::bestGuess) { // Right now, this is a mess. We need a separation of the // pseudo costs from the ChooseVariable method CbcCompareEstimate compare; model_.setNodeComparison(compare); GuessHeuristic * guessHeu = new GuessHeuristic(model_); model_.addHeuristic(guessHeu); delete guessHeu; } if (s.treeTraversalMethod() == Bonmin::BabSetupBase::HeapOnly) { //Do nothing this is the default of Cbc. } else if (s.treeTraversalMethod() == Bonmin::BabSetupBase::DiveFromBest) { CbcDiver treeTraversal; treeTraversal.initialize(s); model_.passInTreeHandler(treeTraversal); } else if (s.treeTraversalMethod() == Bonmin::BabSetupBase::ProbedDive) { CbcProbedDiver treeTraversal; treeTraversal.initialize(s); model_.passInTreeHandler(treeTraversal); } else if (s.treeTraversalMethod() == Bonmin::BabSetupBase::DfsDiveFromBest) { CbcDfsDiver treeTraversal; treeTraversal.initialize(s); model_.passInTreeHandler(treeTraversal); } else if (s.treeTraversalMethod() == Bonmin::BabSetupBase::DfsDiveDynamic) { CbcDfsDiver treeTraversal; treeTraversal.initialize(s); model_.passInTreeHandler(treeTraversal); DiverCompare compare; compare.setComparisonDive(*model_.nodeComparison()); compare.setComparisonBound(CbcCompareObjective()); CbcDfsDiver * dfs = dynamic_cast<CbcDfsDiver *> (model_.tree()); assert(dfs); compare.setDiver(dfs); model_.setNodeComparison(compare); } model_.setNumberStrong(s.getIntParameter(Bonmin::BabSetupBase::NumberStrong)); model_.setNumberBeforeTrust(s.getIntParameter(Bonmin::BabSetupBase::MinReliability)); model_.setNumberPenalties(8); model_.setDblParam(CbcModel::CbcMaximumSeconds, s.getDoubleParameter(Bonmin::BabSetupBase::MaxTime)); model_.setMaximumNodes(s.getIntParameter(Bonmin::BabSetupBase::MaxNodes)); model_.setMaximumNumberIterations(s.getIntParameter(Bonmin::BabSetupBase::MaxIterations)); model_.setMaximumSolutions(s.getIntParameter(Bonmin::BabSetupBase::MaxSolutions)); model_.setIntegerTolerance(s.getDoubleParameter(Bonmin::BabSetupBase::IntTol)); //Get objects from model_ if it is not null means there are some sos constraints or non-integer branching object // pass them to cut generators. OsiObject ** objects = model_.objects(); if (specOpt!=16 && objects) { int numberObjects = model_.numberObjects(); if (objects_ != NULL) { for (int i = 0 ; i < nObjects_; i++) delete objects_[i]; } delete [] objects_; objects_ = new OsiObject*[numberObjects]; nObjects_ = numberObjects; for (int i = 0 ; i < numberObjects; i++) { OsiObject * obj = objects[i]; CbcSimpleInteger * intObj = dynamic_cast<CbcSimpleInteger *> (obj); if (intObj) { objects_[i] = intObj->osiObject(); } else { CbcSOS * sosObj = dynamic_cast<CbcSOS *>(obj); if (sosObj) objects_[i] = sosObj->osiObject(model_.solver()); else {//Maybe an unsupported CbcObject CbcObject * cbcObj = dynamic_cast<CbcObject *>(obj); if (cbcObj) { std::cerr<<"Unsupported CbcObject appears in the code"<<std::endl; throw UNSUPPORTED_CBC_OBJECT; } else {//It has to be an OsiObject. objects_[i]=obj->clone(); } } } } CbcCutGenerator ** gen = model_.cutGenerators(); int numGen = model_.numberCutGenerators(); for (int i = 0 ; i < numGen ; i++) { Bonmin::OaDecompositionBase * oa = dynamic_cast<Bonmin::OaDecompositionBase * >(gen[i]->generator()); // if (oa) // printf ("\n\n\nat least one OADecompBase\n\n\n"); if (oa) // pass objects oa->setObjects(objects_,nObjects_); } } // if (objects_) { // for (int i = 0 ; i < nObjects_; i++) // delete objects_ [i]; // delete [] objects_; // } // OsiObject ** objects = model_.objects(); // int numObjects = model_.numberObjects(); // nObjects_ = 0; // objects_ = new OsiObject* [numObjects]; // for (int i=0; i < numObjects; ++i) // if (objects [i]) // objects_ [nObjects_++] = objects [i] -> clone (); try { //Get the time and start. { OsiTMINLPInterface * tmpOsi = NULL; if(s.nonlinearSolver() == s.continuousSolver()){ tmpOsi = dynamic_cast<OsiTMINLPInterface *> (model_.solver()); tmpOsi->forceSolverOutput(s.getIntParameter(Bonmin::BabSetupBase::RootLogLevel)); } model_.initialSolve(); if(tmpOsi != NULL){ tmpOsi->setSolverOutputToDefault(); } } int ival; s.options()->GetEnumValue("enable_dynamic_nlp", ival, "bonmin."); if(s.nonlinearSolver() == s.continuousSolver() && ival) { if(!model_.solver()->isProvenOptimal() ){//Something went wrong check if objective is linear and alternate model // can be solved OsiTMINLPInterface * tmpOsi = dynamic_cast<OsiTMINLPInterface *> (model_.solver()); TMINLPLinObj * tmp_tminlp = dynamic_cast<TMINLPLinObj *> (tmpOsi->model()); tmpOsi->setModel(tmp_tminlp->tminlp()); model_.initialSolve(); } else { LinearCutsGenerator cgl; cgl.initialize(s); OsiCuts cuts; cgl.generateCuts(*model_.solver(), cuts); std::vector<const OsiRowCut *> mycuts(cuts.sizeRowCuts()); for(int i = 0 ; i < cuts.sizeRowCuts() ; i++){ mycuts[i] = cuts.rowCutPtr(i); } model_. solver () -> applyRowCuts ((int) mycuts.size(), (const OsiRowCut **) &mycuts[0]); } //Added by Claudia OsiTMINLPInterface * nlpSolver = dynamic_cast<OsiTMINLPInterface *>(model_.solver()); if(nlpSolver && nlpSolver->getNewCutoffDecr()!=COIN_DBL_MAX) model_.setDblParam(CbcModel::CbcCutoffIncrement, nlpSolver->getNewCutoffDecr()); model_.solver()->resolve(); } // for Couenne model_.passInSolverCharacteristics (bonBabInfoPtr); continuousRelaxation_ =model_.solver()->getObjValue(); if (specOpt==16)//Set warm start point for Ipopt { #if 1 const double * colsol = model_.solver()->getColSolution(); const double * duals = model_.solver()->getRowPrice(); OsiTMINLPInterface * tnlpSolver = dynamic_cast<OsiTMINLPInterface *>(model_.solver()); // Primal dual point is not copied if one (supposedly a better one) has already been put into the solver. if(tnlpSolver->problem()->has_x_init() != 2){ model_.solver()->setColSolution(colsol); model_.solver()->setRowPrice(duals); } #else OsiTMINLPInterface * tnlpSolver = dynamic_cast<OsiTMINLPInterface *>(model_.solver()); CoinWarmStart * warm = tnlpSolver->solver()->getWarmStart(tnlpSolver->problem()); tnlpSolver->solver()->setWarmStart(warm, tnlpSolver->problem()); delete warm; #endif #if 0 // Sometimes primal dual point is problematic in the context of Cut-and-branch model_.solver()->resolve(); if(!model_.solver()->isProvenOptimal()) model_.solver()->setColSolution(NULL); #endif } #ifdef SIGNAL CoinSighandler_t saveSignal = SIG_DFL; // register signal handler saveSignal = signal (SIGINT,couenne_signal_handler); currentBranchModel = &model_; #endif // to get node parent info in Cbc, pass parameter 3. //model_.branchAndBound(3); remaining_time -= CoinCpuTime(); model_.setDblParam(CbcModel::CbcMaximumSeconds, remaining_time); if(remaining_time > 0.) model_.branchAndBound(); } catch(TNLPSolver::UnsolvedError *E){ s.nonlinearSolver()->model()->finalize_solution (TMINLP::MINLP_ERROR, 0, NULL, DBL_MAX); throw E; } numNodes_ = model_.getNodeCount(); bestObj_ = model_.getObjValue(); bestBound_ = model_.getBestPossibleObjValue(); mipIterationCount_ = model_.getIterationCount(); bool hasFailed = false; if (specOpt==16)//Did we continue branching on a failure { CbcNlpStrategy * nlpStrategy = dynamic_cast<CbcNlpStrategy *>(model_.strategy()); if (nlpStrategy) hasFailed = nlpStrategy->hasFailed(); else throw -1; } else hasFailed = s.nonlinearSolver()->hasContinuedOnAFailure(); // Output summarizing cut generators (taken from CbcSolver.cpp) // ToDo put into proper print level int numberGenerators = model_.numberCutGenerators(); for (int iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model_.cutGenerator(iGenerator); //CglStored * stored = dynamic_cast<CglStored*>(generator->generator()); if (true&&!(generator->numberCutsInTotal() || generator->numberColumnCuts())) continue; if(modelHandler_->logLevel() >= 1) { *modelHandler_ << generator->cutGeneratorName() << "was tried" << generator->numberTimesEntered() << "times and created" << generator->numberCutsInTotal()+generator->numberColumnCuts() << "cuts of which" << generator->numberCutsActive() << "were active after adding rounds of cuts"; // if (generator->timing()) { // char timebuf[20]; // sprintf(timebuf, "(%.3fs)", generator->timeInCutGenerator()); // *modelHandler_ << timebuf << CoinMessageEol; // } // else { // *modelHandler_ << CoinMessageEol; // } } } TMINLP::SolverReturn status = TMINLP::MINLP_ERROR; if (model_.numberObjects()==0) { if (bestSolution_) delete [] bestSolution_; OsiSolverInterface * solver = (s.nonlinearSolver() == s.continuousSolver())? model_.solver() : s.nonlinearSolver(); bestSolution_ = new double[solver->getNumCols()]; CoinCopyN(solver->getColSolution(), solver->getNumCols(), bestSolution_); bestObj_ = bestBound_ = solver->getObjValue(); } if (bonBabInfoPtr->bestSolution2().size() > 0) { assert((int) bonBabInfoPtr->bestSolution2().size() == s.nonlinearSolver()->getNumCols()); if (bestSolution_) delete [] bestSolution_; bestSolution_ = new double[s.nonlinearSolver()->getNumCols()]; std::copy(bonBabInfoPtr->bestSolution2().begin(), bonBabInfoPtr->bestSolution2().end(), bestSolution_); bestObj_ = (bonBabInfoPtr->bestObj2()); (*s.nonlinearSolver()->messageHandler())<<"\nReal objective function: " <<bestObj_<<CoinMessageEol; } else if (model_.bestSolution()) { if (bestSolution_) delete [] bestSolution_; bestSolution_ = new double[s.nonlinearSolver()->getNumCols()]; CoinCopyN(model_.bestSolution(), s.nonlinearSolver()->getNumCols(), bestSolution_); } if(remaining_time <= 0.){ status = TMINLP::LIMIT_EXCEEDED; if (bestSolution_) { mipStatus_ = Feasible; } else { mipStatus_ = NoSolutionKnown; } } else if (model_.status() == 0) { if(model_.isContinuousUnbounded()){ status = TMINLP::CONTINUOUS_UNBOUNDED; mipStatus_ = UnboundedOrInfeasible; } else if (bestSolution_) { status = TMINLP::SUCCESS; mipStatus_ = FeasibleOptimal; } else { status = TMINLP::INFEASIBLE; mipStatus_ = ProvenInfeasible; } } else if (model_.status() == 1 || model_.status() == 5) { #if (BONMIN_VERSION_MAJOR > 1) || (BONMIN_VERSION_MINOR > 6) status = model_.status() == 1 ? TMINLP::LIMIT_EXCEEDED : TMINLP::USER_INTERRUPT; #else status = TMINLP::LIMIT_EXCEEDED; #endif if (bestSolution_) { mipStatus_ = Feasible; } else { mipStatus_ = NoSolutionKnown; } } else if (model_.status()==2) { status = TMINLP::MINLP_ERROR; } // Which solution should we use? false if RBS's, true if Cbc's bool use_RBS_Cbc = !problem_ || !(problem_ -> getRecordBestSol ()) || !(problem_ -> getRecordBestSol () -> getHasSol()) || (((fabs (bestObj_) < COUENNE_INFINITY / 1e4) && (problem_ -> getRecordBestSol () -> getVal () > bestObj_))); /* if we do not pass the cbc solution and problem_ -> getRecordBestSol () -> getHasSol() is true, then there should be a solution vector in problem_ -> getRecordBestSol () */ assert(use_RBS_Cbc || problem_ -> getRecordBestSol () -> getSol() != NULL); s.nonlinearSolver () -> model () -> finalize_solution (status, s.nonlinearSolver () -> getNumCols (), use_RBS_Cbc ? bestSolution_ : problem_ -> getRecordBestSol () -> getSol (), use_RBS_Cbc ? bestObj_ : problem_ -> getRecordBestSol () -> getVal ()); }
/** Returns a feasible solution to the MINLP * The heuristic constructs a MIP based approximating all univariate functions appearing in nonlinear constraints * The linear approximation is obtained by adding inner chords linking pairs of points until covering the range of each variable **/ int HeuristicInnerApproximation::solution(double &solutionValue, double *betterSolution) { if(model_->getNodeCount() || model_->getCurrentPassNumber() > 1) return 0; if ((model_->getNodeCount()%howOften_)!=0||model_->getCurrentPassNumber()>1) return 0; int returnCode = 0; // 0 means it didn't find a feasible solution OsiTMINLPInterface * nlp = NULL; if(setup_->getAlgorithm() == B_BB) nlp = dynamic_cast<OsiTMINLPInterface *>(model_->solver()->clone()); else nlp = dynamic_cast<OsiTMINLPInterface *>(setup_->nonlinearSolver()->clone()); TMINLP2TNLP* minlp = nlp->problem(); // set tolerances double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance); int numberColumns; int numberRows; int nnz_jac_g; int nnz_h_lag; Ipopt::TNLP::IndexStyleEnum index_style; minlp->get_nlp_info(numberColumns, numberRows, nnz_jac_g, nnz_h_lag, index_style); const Bonmin::TMINLP::VariableType* variableType = minlp->var_types(); const double* x_sol = minlp->x_sol(); double* newSolution = new double [numberColumns]; memcpy(newSolution,x_sol,numberColumns*sizeof(double)); double* new_g_sol = new double [numberRows]; bool feasible = true; // load the problem to OSI #ifdef DEBUG_BON_HEURISTIC cout << "Loading the problem to OSI\n"; #endif OsiSolverInterface *si = mip_->solver(); // the MIP solver bool delete_si = false; if(si == NULL) { si = new OsiClpSolverInterface; mip_->setLpSolver(si); delete_si = true; } CoinMessageHandler * handler = model_->messageHandler()->clone(); si->passInMessageHandler(handler); si->messageHandler()->setLogLevel(2); #ifdef DEBUG_BON_HEURISTIC cout << "Loading problem into si\n"; #endif extractInnerApproximation(*nlp, *si, newSolution, true); // Call the function construncting the inner approximation description #ifdef DEBUG_BON_HEURISTIC cout << "problem loaded\n"; cout << "**** Running optimization ****\n"; #endif mip_->optimize(DBL_MAX, 2, 180); // Optimize the MIP #ifdef DEBUG_BON_HEURISTIC cout << "Optimization finished\n"; #endif if(mip_->getLastSolution()) { // if the MIP solver returns a feasible solution const double* solution = mip_->getLastSolution(); for (size_t iLCol=0;iLCol<numberColumns;iLCol++) { newSolution[iLCol] = solution[iLCol]; } } else feasible = false; if(delete_si) { delete si; } delete handler; const double* x_l = minlp->x_l(); const double* x_u = minlp->x_u(); const double* g_l = minlp->g_l(); const double* g_u = minlp->g_u(); double primalTolerance = 1.0e-6; #if 1 if(feasible ) { std::vector<double> memLow(numberColumns); std::vector<double> memUpp(numberColumns); std::copy(minlp->x_l(), minlp->x_l() + numberColumns, memLow.begin()); std::copy(minlp->x_u(), minlp->x_u() + numberColumns, memUpp.begin()); // fix the integer variables and solve the NLP for (int iColumn=0;iColumn<numberColumns;iColumn++) { if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) { double value=floor(newSolution[iColumn]+0.5); minlp->SetVariableUpperBound(iColumn, value); minlp->SetVariableLowerBound(iColumn, value); } } if(feasible) { nlp->initialSolve(); if(minlp->optimization_status() != Ipopt::SUCCESS) { feasible = false; } memcpy(newSolution,minlp->x_sol(),numberColumns*sizeof(double)); } for (int iColumn=0;iColumn<numberColumns;iColumn++) { if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) { minlp->SetVariableUpperBound(iColumn, memUpp[iColumn]); minlp->SetVariableLowerBound(iColumn, memLow[iColumn]); } } } #endif #endif if(feasible) { double newSolutionValue; minlp->eval_f(numberColumns, newSolution, true, newSolutionValue); if(newSolutionValue < solutionValue) { memcpy(betterSolution,newSolution,numberColumns*sizeof(double)); solutionValue = newSolutionValue; returnCode = 1; } } delete [] newSolution; delete [] new_g_sol; delete nlp; #ifdef DEBUG_BON_HEURISTIC std::cout<<"Inner approximation returnCode = "<<returnCode<<std::endl; #endif return returnCode; }
void HeuristicInnerApproximation::extractInnerApproximation(OsiTMINLPInterface & nlp, OsiSolverInterface &si, const double * x, bool getObj) { int n; int m; int nnz_jac_g; int nnz_h_lag; Ipopt::TNLP::IndexStyleEnum index_style; TMINLP2TNLP * problem = nlp.problem(); //Get problem information problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style); vector<int> jRow(nnz_jac_g); vector<int> jCol(nnz_jac_g); vector<double> jValues(nnz_jac_g); problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL); if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style { for(int i = 0 ; i < nnz_jac_g ; i++){ jRow[i]--; jCol[i]--; } } //get Jacobian problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL, jValues()); vector<double> g(m); problem->eval_g(n, x, 1, m, g()); vector<int> nonLinear(m); //store non linear constraints (which are to be removed from IA) int numNonLinear = 0; const double * rowLower = nlp.getRowLower(); const double * rowUpper = nlp.getRowUpper(); const double * colLower = nlp.getColLower(); const double * colUpper = nlp.getColUpper(); assert(m == nlp.getNumRows()); double infty = si.getInfinity(); double nlp_infty = nlp.getInfinity(); vector<Ipopt::TNLP::LinearityType> constTypes(m); problem->get_constraints_linearity(m, constTypes()); for (int i = 0; i < m; i++) { if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) { nonLinear[numNonLinear++] = i; } } vector<double> rowLow(m - numNonLinear); vector<double> rowUp(m - numNonLinear); int ind = 0; for (int i = 0; i < m; i++) { if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) { if (rowLower[i] > -nlp_infty) { // printf("Lower %g ", rowLower[i]); rowLow[ind] = (rowLower[i]); } else rowLow[ind] = -infty; if (rowUpper[i] < nlp_infty) { // printf("Upper %g ", rowUpper[i]); rowUp[ind] = (rowUpper[i]); } else rowUp[ind] = infty; ind++; } } CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g); mat.setDimensions(m, n); // In case matrix was empty, this should be enough //remove non-linear constraints mat.deleteRows(numNonLinear, nonLinear()); int numcols = nlp.getNumCols(); vector<double> obj(numcols); for (int i = 0; i < numcols; i++) obj[i] = 0.; si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), obj(), rowLow(), rowUp()); const Bonmin::TMINLP::VariableType* variableType = problem->var_types(); for (int i = 0; i < n; i++) { if ((variableType[i] == TMINLP::BINARY) || (variableType[i] == TMINLP::INTEGER)) si.setInteger(i); } if (getObj) { bool addObjVar = false; if (problem->hasLinearObjective()) { double zero; vector<double> x0(n, 0.); problem->eval_f(n, x0(), 1, zero); si.setDblParam(OsiObjOffset, -zero); //Copy the linear objective and don't create a dummy variable. problem->eval_grad_f(n, x, 1, obj()); si.setObjective(obj()); } else { addObjVar = true; } if (addObjVar) { nlp.addObjectiveFunction(si, x); } } // Hassan IA initial description int InnerDesc = 1; if (InnerDesc == 1) { OsiCuts cs; double * p = CoinCopyOfArray(colLower, n); double * pp = CoinCopyOfArray(colLower, n); double * up = CoinCopyOfArray(colUpper, n); const int& nbAp = nbAp_; std::vector<int> nbG(m, 0);// Number of generated points for each nonlinear constraint std::vector<double> step(n); for (int i = 0; i < n; i++) { if (colUpper[i] > 1e08) { up[i] = 0; } if (colUpper[i] > 1e08 || colLower[i] < -1e08 || (variableType[i] == TMINLP::BINARY) || (variableType[i] == TMINLP::INTEGER)) { step[i] = 0; } else step[i] = (up[i] - colLower[i]) / (nbAp); if (colLower[i] < -1e08) { p[i] = 0; pp[i] = 0; } } vector<double> g_p(m); vector<double> g_pp(m); for (int j = 1; j <= nbAp; j++) { for (int i = 0; i < n; i++) { pp[i] += step[i]; } problem->eval_g(n, p, 1, m, g_p()); problem->eval_g(n, pp, 1, m, g_pp()); double diff = 0; int varInd = 0; for (int i = 0; (i < m && constTypes[i] == Ipopt::TNLP::NON_LINEAR); i++) { if (varInd == n - 1) varInd = 0; diff = std::abs(g_p[i] - g_pp[i]); if (nbG[i] < nbAp - 1) { getMyInnerApproximation(nlp, cs, i, p, pp);// Generate a chord connecting the two points p[varInd] = pp[varInd]; nbG[i]++; } varInd++; } } for(int i = 0; (i< m && constTypes[i] == Ipopt::TNLP::NON_LINEAR); i++) { // getConstraintOuterApproximation(cs, i, colUpper, NULL, true);// Generate Tangents at current point getMyInnerApproximation(nlp, cs, i, p, up);// Generate a chord connecting the two points } delete [] p; delete [] pp; delete [] up; si.applyCuts(cs); } }
/** Get an inner-approximation constraint obtained by drawing a chord linking the two given points x and x2. * This only applies to nonlinear constraints featuring univariate functions (f(x) <= y).**/ bool HeuristicInnerApproximation::getMyInnerApproximation(OsiTMINLPInterface &si, OsiCuts &cs, int ind, const double * x, const double * x2) { int n, m, nnz_jac_g, nnz_h_lag; Ipopt::TNLP::IndexStyleEnum index_style; TMINLP2TNLP * problem = si.problem(); problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style); CoinPackedVector cut; double lb = 0; double ub = 0; double infty = si.getInfinity(); lb = -infty; // we only compute <= constraints double g = 0; double g2 = 0; double diff = 0; double a = 0; problem->eval_gi(n, x, 1, ind, g); problem->eval_gi(n, x2, 1, ind, g2); vector<int> jCol(n); int nnz; problem->eval_grad_gi(n, x2, 0, ind, nnz, jCol(), NULL); vector<double> jValues(nnz); problem->eval_grad_gi(n, x2, 0, ind, nnz, NULL, jValues()); bool add = false; for (int i = 0; i < nnz; i++) { const int &colIdx = jCol[i]; if(index_style == Ipopt::TNLP::FORTRAN_STYLE) jCol[i]--; diff = x[colIdx] - x2[colIdx]; if (fabs(diff) >= 1e-8) { a = (g - g2) / diff; cut.insert(colIdx, a); ub = a * x[colIdx] - g; add = true; } else cut.insert(colIdx, jValues[i]); } if (add) { OsiRowCut newCut; newCut.setGloballyValidAsInteger(1); newCut.setLb(lb); //********* Perspective Extension ********// int* ids = problem->get_const_xtra_id(); // vector of indices corresponding to the binary variable activating the corresponding constraint int binary_id = (ids == NULL) ? -1 : ids[ind]; // Get the index of the corresponding indicator binary variable if(binary_id>0) {// If this hyperplane is a linearization of a disjunctive constraint, we link its righthand side to the corresponding indicator binary variable cut.insert(binary_id, -ub); // ∂x ≤ ub => ∂x - ub*z ≤ 0 newCut.setUb(0); } else newCut.setUb(ub); //********* Perspective Extension ********// newCut.setRow(cut); cs.insert(newCut); return true; } return false; }
int MilpRounding::solution(double &solutionValue, double *betterSolution) { if(model_->getCurrentPassNumber() > 1) return 0; if (model_->currentDepth() > 2 && (model_->getNodeCount()%howOften_)!=0) return 0; int returnCode = 0; // 0 means it didn't find a feasible solution OsiTMINLPInterface * nlp = NULL; if(setup_->getAlgorithm() == B_BB) nlp = dynamic_cast<OsiTMINLPInterface *>(model_->solver()->clone()); else nlp = dynamic_cast<OsiTMINLPInterface *>(setup_->nonlinearSolver()->clone()); TMINLP2TNLP* minlp = nlp->problem(); // set tolerances double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance); //double primalTolerance = 1.0e-6; int n; int m; int nnz_jac_g; int nnz_h_lag; Ipopt::TNLP::IndexStyleEnum index_style; minlp->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style); const Bonmin::TMINLP::VariableType* variableType = minlp->var_types(); const double* x_sol = minlp->x_sol(); const double* g_l = minlp->g_l(); const double* g_u = minlp->g_u(); const double * colsol = model_->solver()->getColSolution(); // Get information about the linear and nonlinear part of the instance TMINLP* tminlp = nlp->model(); vector<Ipopt::TNLP::LinearityType> c_lin(m); tminlp->get_constraints_linearity(m, c_lin()); vector<int> c_idx(m); int n_lin = 0; for (int i=0;i<m;i++) { if (c_lin[i]==Ipopt::TNLP::LINEAR) c_idx[i] = n_lin++; else c_idx[i] = -1; } // Get the structure of the jacobian vector<int> indexRow(nnz_jac_g); vector<int> indexCol(nnz_jac_g); minlp->eval_jac_g(n, x_sol, false, m, nnz_jac_g, indexRow(), indexCol(), 0); // get the jacobian values vector<double> jac_g(nnz_jac_g); minlp->eval_jac_g(n, x_sol, false, m, nnz_jac_g, NULL, NULL, jac_g()); // Sort the matrix to column ordered vector<int> sortedIndex(nnz_jac_g); CoinIotaN(sortedIndex(), nnz_jac_g, 0); MatComp c; c.iRow = indexRow(); c.jCol = indexCol(); std::sort(sortedIndex.begin(), sortedIndex.end(), c); vector<int> row (nnz_jac_g); vector<double> value (nnz_jac_g); vector<int> columnStart(n,0); vector<int> columnLength(n,0); int indexCorrection = (index_style == Ipopt::TNLP::C_STYLE) ? 0 : 1; int iniCol = -1; int nnz = 0; for(int i=0; i<nnz_jac_g; i++) { int thisIndexCol = indexCol[sortedIndex[i]]-indexCorrection; int thisIndexRow = c_idx[indexRow[sortedIndex[i]] - indexCorrection]; if(thisIndexCol != iniCol) { iniCol = thisIndexCol; columnStart[thisIndexCol] = nnz; columnLength[thisIndexCol] = 0; } if(thisIndexRow == -1) continue; columnLength[thisIndexCol]++; row[nnz] = thisIndexRow; value[nnz] = jac_g[i]; nnz++; } // Build the row lower and upper bounds vector<double> newRowLower(n_lin); vector<double> newRowUpper(n_lin); for(int i = 0 ; i < m ; i++){ if(c_idx[i] == -1) continue; newRowLower[c_idx[i]] = g_l[i]; newRowUpper[c_idx[i]] = g_u[i]; } // Get solution array for heuristic solution vector<double> newSolution(n); std::copy(x_sol, x_sol + n, newSolution.begin()); // Define the constraint matrix for MILP CoinPackedMatrix matrix(true,n_lin,n, nnz, value(), row(), columnStart(), columnLength()); // create objective function and columns lower and upper bounds for MILP // and create columns for matrix in MILP //double alpha = 0; double beta = 1; vector<double> objective(n); vector<int> idxIntegers; idxIntegers.reserve(n); for(int i = 0 ; i < n ; i++){ if(variableType[i] != Bonmin::TMINLP::CONTINUOUS){ idxIntegers.push_back(i); objective[i] = beta*(1 - 2*colsol[i]); } } #if 0 // Get dual multipliers and build gradient of the lagrangean const double * duals = nlp->getRowPrice() + 2 *n; vector<double> grad(n, 0); vector<int> indices(n, 0); tminlp->eval_grad_f(n, x_sol, false, grad()); for(int i = 0 ; i < m ; i++){ if(c_lin[i] == Ipopt::TNLP::LINEAR) continue; int nnz; tminlp->eval_grad_gi(n, x_sol, false, i, nnz, indices(), NULL); tminlp->eval_grad_gi(n, x_sol, false, i, nnz, NULL, grad()); for(int k = 0 ; k < nnz ; k++){ objective[indices[k]] += alpha *duals[i] * grad[k]; } } for(int i = 0 ; i < n ; i++){ if(variableType[i] != Bonmin::TMINLP::CONTINUOUS) objective[i] += alpha * grad[i]; //if(fabs(objective[i]) < 1e-4) objective[i] = 0; else objective[i] = 0; } std::copy(objective.begin(), objective.end(), std::ostream_iterator<double>(std::cout, " ")); std::cout<<std::endl; #endif // load the problem to OSI OsiSolverInterface *si = mip_->solver(); assert(si != NULL); CoinMessageHandler * handler = model_->messageHandler()->clone(); si->passInMessageHandler(handler); si->messageHandler()->setLogLevel(1); si->loadProblem(matrix, model_->solver()->getColLower(), model_->solver()->getColUpper(), objective(), newRowLower(), newRowUpper()); si->setInteger(idxIntegers(), static_cast<int>(idxIntegers.size())); si->applyCuts(noGoods); bool hasFractionnal = true; while(hasFractionnal){ mip_->optimize(DBL_MAX, 0, 60); hasFractionnal = false; #if 0 bool feasible = false; if(mip_->getLastSolution()) { const double* solution = mip_->getLastSolution(); std::copy(solution, solution + n, newSolution.begin()); feasible = true; } if(feasible) { // fix the integer variables and solve the NLP // also add no good cut CoinPackedVector v; double lb = 1; for (int iColumn=0;iColumn<n;iColumn++) { if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) { double value=newSolution[iColumn]; if (fabs(floor(value+0.5)-value)>integerTolerance) { #ifdef DEBUG_BON_HEURISTIC_DIVE_MIP cout<<"It should be infeasible because: "<<endl; cout<<"variable "<<iColumn<<" is not integer"<<endl; #endif feasible = false; break; } else { value=floor(newSolution[iColumn]+0.5); if(value > 0.5){ v.insert(iColumn, -1); lb -= value; } minlp->SetVariableUpperBound(iColumn, value); minlp->SetVariableLowerBound(iColumn, value); } } } } #endif } bool feasible = false; if(mip_->getLastSolution()) { const double* solution = mip_->getLastSolution(); std::copy(solution, solution + n, newSolution.begin()); feasible = true; delete handler; } if(feasible) { // fix the integer variables and solve the NLP // also add no good cut CoinPackedVector v; double lb = 1; for (int iColumn=0;iColumn<n;iColumn++) { if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) { double value=newSolution[iColumn]; if (fabs(floor(value+0.5)-value)>integerTolerance) { feasible = false; break; } else { value=floor(newSolution[iColumn]+0.5); if(value > 0.5){ v.insert(iColumn, -1); lb -= value; } minlp->SetVariableUpperBound(iColumn, value); minlp->SetVariableLowerBound(iColumn, value); } } } OsiRowCut c; c.setRow(v); c.setLb(lb); c.setUb(DBL_MAX); noGoods.insert(c); if(feasible) { nlp->initialSolve(); if(minlp->optimization_status() != Ipopt::SUCCESS) { feasible = false; } std::copy(x_sol,x_sol+n, newSolution.begin()); } } if(feasible) { double newSolutionValue; minlp->eval_f(n, newSolution(), true, newSolutionValue); if(newSolutionValue < solutionValue) { std::copy(newSolution.begin(), newSolution.end(), betterSolution); solutionValue = newSolutionValue; returnCode = 1; } } delete nlp; #ifdef DEBUG_BON_HEURISTIC_DIVE_MIP std::cout<<"DiveMIP returnCode = "<<returnCode<<std::endl; #endif return returnCode; }