int main (int argc, char *argv[]) { if (argc < 3) { cout << "Enter the two files for registration ..\n"; return -1; } pcl::console::setVerbosityLevel (pcl::console::L_DEBUG); string sourcefile = argv[1]; string targetfile = argv[2]; CloudPtr cloud1 ( new Cloud ); CloudPtr cloud2 ( new Cloud ); readPCDBinaryFile (sourcefile.c_str (), cloud1); readPCDBinaryFile (targetfile.c_str (), cloud2); //pcl::IterativeClosestPointNonLinear <Point, Point> icp; pcl::IterativeClosestPoint <Point, Point> icp; icp.setInputSource (cloud1); icp.setInputTarget (cloud2); icp.setMaximumIterations (2500); icp.setTransformationEpsilon (0.0000001); Eigen::AngleAxisf init_rotation (0.6931, Eigen::Vector3f::UnitZ ()); Eigen::Translation3f init_translation (1.79387, 0.720047, 0); //Eigen::Matrix4f init_guess = Eigen::Matrix4f::Identity (); Eigen::Matrix4f init_guess = (init_translation * init_rotation).matrix (); CloudPtr output (new Cloud); icp.align (*output, init_guess); //pcl::transformPointCloud (*cloud1, *output, icp.getFinalTransformation ()); std::cout << "ICP NL has converged:" << icp.hasConverged () << " score: " << icp.getFitnessScore () << std::endl; cout << "--------- Final transformation ---------------\n"; cout << icp.getFinalTransformation () << "\n\n"; CloudPtr cloud1_ig (new Cloud); pcl::transformPointCloud (*cloud1, *cloud1_ig, init_guess); PCLVisualizer* p = new PCLVisualizer (argc, argv, "Registration"); int vp1 = 1; p->createViewPort (0.0, 0.0, 0.5, 1.0, vp1); int vp2 = 2; p->createViewPort (0.5, 0.0, 1.0, 1.0, vp2); p->setBackgroundColor (113.0/255, 113.0/255, 154.0/255); int color[3] = { 255, 0, 0}; displayPointCloud (p, cloud1_ig, color, (char *) "opcloud1", vp1); color[0] = 0; color[1] = 255; color[2] = 0; displayPointCloud (p, cloud2, color, (char *) "opcloud2", vp1); color[0] = 0; color[1] = 255; color[2] = 0; displayPointCloud (p, output, color, (char *) "opcloud11", vp2); color[0] = 255; color[1] = 0; color[2] = 0; displayPointCloud (p, cloud2, color, (char *) "opcloud12", vp2); p->spin (); return 0; }
void PointCloudViewer::onInit(PCLVisualizer& visualizer) { // position viewport 3m behind kinect, but look around the point 2m in front of it visualizer.setCameraPosition(0., 0., -3., 0., 0., 2., 0., -1., 0.); visualizer.setCameraClipDistances(1.0, 10.0); visualizer.setBackgroundColor(0.3, 0.3, 0.8); }
void visualize (const ModelLibrary::HashTable& hash_table) { PCLVisualizer vis; vis.setBackgroundColor (0.1, 0.1, 0.1); const ModelLibrary::HashTableCell* cells = hash_table.getVoxels (); size_t max_num_entries = 0; int i, id3[3], num_cells = hash_table.getNumberOfVoxels (); float half_side, b[6], cell_center[3], spacing = hash_table.getVoxelSpacing ()[0]; char cube_id[128]; // Just get the maximal number of entries in the cells for ( i = 0 ; i < num_cells ; ++i, ++cells ) { if (cells->size ()) // That's the number of models in the cell (it's maximum one, since we loaded only one model) { size_t num_entries = (*cells->begin ()).second.size(); // That's the number of entries in the current cell for the model we loaded // Get the max number of entries if ( num_entries > max_num_entries ) max_num_entries = num_entries; } } // Now, that we have the max. number of entries, we can compute the // right scale factor for the spheres float s = (0.5f*spacing)/static_cast<float> (max_num_entries); cout << "s = " << s << ", max_num_entries = " << max_num_entries << endl; // Now, render a sphere with the right radius at the right place for ( i = 0, cells = hash_table.getVoxels () ; i < num_cells ; ++i, ++cells ) { // Does the cell have any entries? if (cells->size ()) { hash_table.compute3dId (i, id3); hash_table.computeVoxelCenter (id3, cell_center); // That's half of the cube's side length half_side = s*static_cast<float> ((*cells->begin ()).second.size ()); // Adjust the bounds of the cube b[0] = cell_center[0] - half_side; b[1] = cell_center[0] + half_side; b[2] = cell_center[1] - half_side; b[3] = cell_center[1] + half_side; b[4] = cell_center[2] - half_side; b[5] = cell_center[2] + half_side; // Set the id sprintf (cube_id, "cube %i", i); // Add to the visualizer vis.addCube (b[0], b[1], b[2], b[3], b[4], b[5], 1.0, 1.0, 0.0, cube_id); } } vis.addCoordinateSystem(1.5, "global"); vis.resetCamera (); // Enter the main loop while (!vis.wasStopped ()) { vis.spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } }
void visualize (const ModelLibrary::HashTable* hash_table) { const ModelLibrary::HashTableCell* cells = hash_table->getVoxels (); size_t max_num_entries = 0; int id3[3], num_cells = hash_table->getNumberOfVoxels (); double cell_center[3]; vtkPoints* sphere_centers = vtkPoints::New (VTK_DOUBLE); vtkDoubleArray* scale = vtkDoubleArray::New (); scale->SetNumberOfComponents(1); // Get the positions of the spheres (one sphere per full cell) for (int i = 0 ; i < num_cells ; ++i, ++cells) { // Does the cell have any entries? if (cells->size ()) { // Insert the center of the current voxel in the point set hash_table->compute3dId (i, id3); hash_table->computeVoxelCenter (id3, cell_center); sphere_centers->InsertNextPoint (cell_center); // Save the number of entries scale->InsertNextValue (static_cast<double> (cells->size ())); // Get the max if (cells->size () > max_num_entries) max_num_entries = cells->size (); } } PCLVisualizer vis; vis.setBackgroundColor (0.1, 0.1, 0.1); // Is there something to visualize? if (max_num_entries) { // Compute the factor which maps all the scale values in (0, 1] double factor = 1.0/static_cast<double> (max_num_entries); // Set the true scale for (vtkIdType i = 0 ; i < scale->GetNumberOfTuples () ; ++i) scale->SetValue(i, factor*scale->GetValue (i)); // Input for the glyph object: the centers + scale vtkPolyData *positions = vtkPolyData::New (); positions->SetPoints (sphere_centers); positions->GetPointData ()->SetScalars (scale); // The spheres vtkSphereSource* sphere_src = vtkSphereSource::New (); sphere_src->SetPhiResolution(8); sphere_src->SetThetaResolution(8); sphere_src->SetRadius(0.5*hash_table->getVoxelSpacing ()[0]); // Now that we have the points and the corresponding scalars, build the glyph object vtkGlyph3D *glyph = vtkGlyph3D::New (); glyph->SetScaleModeToScaleByScalar (); glyph->SetColorModeToColorByScalar (); glyph->SetInput (positions); glyph->SetSource (sphere_src->GetOutput ()); glyph->Update (); vtkSmartPointer<vtkPolyData> glyph_output (glyph->GetOutput ()); vis.addModelFromPolyData(glyph_output); // Cleanup glyph->Delete (); positions->Delete (); sphere_src->Delete (); } vis.spin(); // Cleanup sphere_centers->Delete(); scale->Delete(); }