s32 sys_rwlock_trywlock(PPUThread& ppu, u32 rw_lock_id) { sys_rwlock.Log("sys_rwlock_trywlock(rw_lock_id=0x%x)", rw_lock_id); LV2_LOCK; const auto rwlock = idm::get<lv2_rwlock_t>(rw_lock_id); if (!rwlock) { return CELL_ESRCH; } if (rwlock->writer.get() == &ppu) { return CELL_EDEADLK; } if (rwlock->readers || rwlock->writer || rwlock->wsq.size()) { return CELL_EBUSY; } rwlock->writer = std::static_pointer_cast<CPUThread>(ppu.shared_from_this()); return CELL_OK; }
s32 sys_mutex_trylock(PPUThread& ppu, u32 mutex_id) { sys_mutex.Log("sys_mutex_trylock(mutex_id=0x%x)", mutex_id); LV2_LOCK; const auto mutex = idm::get<lv2_mutex_t>(mutex_id); if (!mutex) { return CELL_ESRCH; } // check current ownership if (mutex->owner.get() == &ppu) { if (mutex->recursive) { if (mutex->recursive_count == 0xffffffffu) { return CELL_EKRESOURCE; } mutex->recursive_count++; return CELL_OK; } return CELL_EDEADLK; } if (mutex->owner) { return CELL_EBUSY; } // own the mutex if free mutex->owner = std::static_pointer_cast<CPUThread>(ppu.shared_from_this()); return CELL_OK; }
s32 sys_rwlock_wlock(PPUThread& ppu, u32 rw_lock_id, u64 timeout) { sys_rwlock.Log("sys_rwlock_wlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout); const u64 start_time = get_system_time(); LV2_LOCK; const auto rwlock = idm::get<lv2_rwlock_t>(rw_lock_id); if (!rwlock) { return CELL_ESRCH; } if (rwlock->writer.get() == &ppu) { return CELL_EDEADLK; } if (!rwlock->readers && !rwlock->writer) { rwlock->writer = std::static_pointer_cast<CPUThread>(ppu.shared_from_this()); return CELL_OK; } // add waiter; protocol is ignored in current implementation sleep_queue_entry_t waiter(ppu, rwlock->wsq); while (!ppu.unsignal()) { CHECK_EMU_STATUS; if (timeout) { const u64 passed = get_system_time() - start_time; if (passed >= timeout) { // if the last waiter quit the writer sleep queue, readers must acquire the lock if (!rwlock->writer && rwlock->wsq.size() == 1) { if (rwlock->wsq.front().get() != &ppu) { throw EXCEPTION("Unexpected"); } rwlock->wsq.clear(); rwlock->notify_all(lv2_lock); } return CELL_ETIMEDOUT; } ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed)); } else { ppu.cv.wait(lv2_lock); } } if (rwlock->readers || rwlock->writer.get() != &ppu) { throw EXCEPTION("Unexpected"); } return CELL_OK; }
s32 sys_mutex_lock(PPUThread& ppu, u32 mutex_id, u64 timeout) { sys_mutex.Log("sys_mutex_lock(mutex_id=0x%x, timeout=0x%llx)", mutex_id, timeout); const u64 start_time = get_system_time(); LV2_LOCK; const auto mutex = idm::get<lv2_mutex_t>(mutex_id); if (!mutex) { return CELL_ESRCH; } // check current ownership if (mutex->owner.get() == &ppu) { if (mutex->recursive) { if (mutex->recursive_count == 0xffffffffu) { return CELL_EKRESOURCE; } mutex->recursive_count++; return CELL_OK; } return CELL_EDEADLK; } // lock immediately if not locked if (!mutex->owner) { mutex->owner = std::static_pointer_cast<CPUThread>(ppu.shared_from_this()); return CELL_OK; } // add waiter; protocol is ignored in current implementation sleep_queue_entry_t waiter(ppu, mutex->sq); while (!ppu.unsignal()) { CHECK_EMU_STATUS; if (timeout) { const u64 passed = get_system_time() - start_time; if (passed >= timeout) { return CELL_ETIMEDOUT; } ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed)); } else { ppu.cv.wait(lv2_lock); } } // new owner must be set when unlocked if (mutex->owner.get() != &ppu) { throw EXCEPTION("Unexpected mutex owner"); } return CELL_OK; }
s32 sys_cond_wait(PPUThread& ppu, u32 cond_id, u64 timeout) { sys_cond.Log("sys_cond_wait(cond_id=0x%x, timeout=%lld)", cond_id, timeout); const u64 start_time = get_system_time(); LV2_LOCK; const auto cond = Emu.GetIdManager().get<lv2_cond_t>(cond_id); if (!cond) { return CELL_ESRCH; } // check current ownership if (cond->mutex->owner.get() != &ppu) { return CELL_EPERM; } // save the recursive value const u32 recursive_value = cond->mutex->recursive_count.exchange(0); // unlock the mutex cond->mutex->unlock(lv2_lock); // add waiter; protocol is ignored in current implementation sleep_queue_entry_t waiter(ppu, cond->sq); // potential mutex waiter (not added immediately) sleep_queue_entry_t mutex_waiter(ppu, cond->mutex->sq, defer_sleep); while (!ppu.unsignal()) { CHECK_EMU_STATUS; // timeout is ignored if waiting on the cond var is already dropped if (timeout && waiter) { const u64 passed = get_system_time() - start_time; if (passed >= timeout) { // try to reown mutex and exit if timed out if (!cond->mutex->owner) { cond->mutex->owner = ppu.shared_from_this(); break; } // drop condition variable and start waiting on the mutex queue mutex_waiter.enter(); waiter.leave(); continue; } ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed)); } else { ppu.cv.wait(lv2_lock); } } // mutex owner is restored after notification or unlocking if (cond->mutex->owner.get() != &ppu) { throw EXCEPTION("Unexpected mutex owner"); } // restore the recursive value cond->mutex->recursive_count = recursive_value; // check timeout (unclear) if (timeout && get_system_time() - start_time > timeout) { return CELL_ETIMEDOUT; } return CELL_OK; }