int main(int argc, char *argv[]) { // parse arguments const char * optstring = "o:hn:pws"; int c; string output; bool onlyPair = false; bool wholePano = false; bool skipOptimisation = false; double n = 2.0; while ((c = getopt (argc, argv, optstring)) != -1) { switch (c) { case 'o': output = optarg; break; case 'h': usage(argv[0]); return 0; case 'n': n = atof(optarg); if(n==0) { cerr <<"Invalid parameter: " << optarg << " is not valid real number" << endl; return 1; }; if (n<1.0) { cerr << "Invalid parameter: n must be at least 1" << endl; return 1; }; break; case 'p': onlyPair= true; break; case 'w': wholePano = true; break; case 's': skipOptimisation = true; break; case ':': cerr <<"Option -n requires a number" << endl; return 1; break; case '?': break; default: abort (); } } if (argc - optind != 1) { usage(argv[0]); return 1; }; if (onlyPair && wholePano) { cerr << "Options -p and -w can't used together" << endl; return 1; }; string input=argv[optind]; Panorama pano; ifstream prjfile(input.c_str()); if (!prjfile.good()) { cerr << "could not open script : " << input << endl; return 1; } pano.setFilePrefix(hugin_utils::getPathPrefix(input)); DocumentData::ReadWriteError err = pano.readData(prjfile); if (err != DocumentData::SUCCESSFUL) { cerr << "error while parsing panos tool script: " << input << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } size_t nrImg=pano.getNrOfImages(); if (nrImg < 2) { cerr << "Panorama should consist of at least two images" << endl; return 1; } if (pano.getNrOfCtrlPoints() < 3) { cerr << "Panorama should contain at least 3 control point" << endl; }; size_t cpremoved1=0; UIntSet CPtoRemove; // step 1 with pairwise optimisation if(!wholePano) { CPtoRemove=getCPoutsideLimit_pair(pano,n); if (CPtoRemove.size()>0) for(UIntSet::reverse_iterator it = CPtoRemove.rbegin(); it != CPtoRemove.rend(); ++it) pano.removeCtrlPoint(*it); cpremoved1=CPtoRemove.size(); }; // step 2 with optimisation of whole panorama bool unconnected=false; if(!onlyPair) { //check for unconnected images CPGraph graph; createCPGraph(pano, graph); CPComponents comps; int parts=findCPComponents(graph, comps); if (parts > 1) { unconnected=true; } else { CPtoRemove.clear(); if(skipOptimisation) { std::cout << endl << "Skipping optimisation, current image positions will be used." << endl; }; CPtoRemove=getCPoutsideLimit(pano,n,skipOptimisation); if (CPtoRemove.size()>0) for(UIntSet::reverse_iterator it = CPtoRemove.rbegin(); it != CPtoRemove.rend(); ++it) pano.removeCtrlPoint(*it); }; }; cout << endl; if(!wholePano) cout << "Removed " << cpremoved1 << " control points in step 1" << endl; if(!onlyPair) if(unconnected) cout <<"Skipped step 2 because of unconnected image pairs" << endl; else cout << "Removed " << CPtoRemove.size() << " control points in step 2" << endl; //write output OptimizeVector optvec = pano.getOptimizeVector(); UIntSet imgs; fill_set(imgs,0, pano.getNrOfImages()-1); // Set output .pto filename if not given if (output=="") { output=input.substr(0,input.length()-4).append("_clean.pto"); } ofstream of(output.c_str()); pano.printPanoramaScript(of, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(input)); cout << endl << "Written output to " << output << endl; return 0; }
int main(int argc, char *argv[]) { // parse arguments const char * optstring = "alho:npqsv:m"; int c; string output; bool doPairwise = false; bool doAutoOpt = false; bool doNormalOpt = false; bool doLevel = false; bool chooseProj = false; bool quiet = false; bool doPhotometric = false; double hfov = 0.0; while ((c = getopt (argc, argv, optstring)) != -1) { switch (c) { case 'o': output = optarg; break; case 'h': usage(argv[0]); return 0; case 'p': doPairwise = true; break; case 'a': doAutoOpt = true; break; case 'n': doNormalOpt = true; break; case 'l': doLevel = true; break; case 's': chooseProj = true; break; case 'q': quiet = true; break; case 'v': hfov = atof(optarg); break; case 'm': doPhotometric = true; break; default: abort (); } } if (argc - optind != 1) { usage(argv[0]); return 1; } const char * scriptFile = argv[optind]; Panorama pano; if (scriptFile[0] == '-') { DocumentData::ReadWriteError err = pano.readData(std::cin); if (err != DocumentData::SUCCESSFUL) { cerr << "error while reading script file from stdin." << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } } else { ifstream prjfile(scriptFile); if (!prjfile.good()) { cerr << "could not open script : " << scriptFile << endl; return 1; } pano.setFilePrefix(hugin_utils::getPathPrefix(scriptFile)); DocumentData::ReadWriteError err = pano.readData(prjfile); if (err != DocumentData::SUCCESSFUL) { cerr << "error while parsing panos tool script: " << scriptFile << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } } if (pano.getNrOfImages() == 0) { cerr << "Panorama should consist of at least one image" << endl; return 1; } // for bad HFOV (from autopano-SIFT) for (unsigned i=0; i < pano.getNrOfImages(); i++) { SrcPanoImage img = pano.getSrcImage(i); if (img.getProjection() == SrcPanoImage::RECTILINEAR && img.getHFOV() >= 180) { // something is wrong here, try to read from exif data double focalLength = 0; double cropFactor = 0; cerr << "HFOV of image " << img.getFilename() << " invalid, trying to read EXIF tags" << endl; bool ok = img.readEXIF(focalLength, cropFactor, true, false); if (! ok) { if (hfov) { img.setHFOV(hfov); } else { cerr << "EXIF reading failed, please specify HFOV with -v" << endl; return 1; } } pano.setSrcImage(i, img); } } if(pano.getNrOfCtrlPoints()==0 && (doPairwise || doAutoOpt || doNormalOpt)) { cerr << "Panorama have to have control points to optimise positions" << endl; return 1; }; if (doPairwise && ! doAutoOpt) { // do pairwise optimisation set<string> optvars; optvars.insert("r"); optvars.insert("p"); optvars.insert("y"); AutoOptimise::autoOptimise(pano); // do global optimisation if (!quiet) std::cerr << "*** Pairwise position optimisation" << endl; PTools::optimize(pano); } else if (doAutoOpt) { if (!quiet) std::cerr << "*** Adaptive geometric optimisation" << endl; SmartOptimise::smartOptimize(pano); } else if (doNormalOpt) { if (!quiet) std::cerr << "*** Optimising parameters specified in PTO file" << endl; PTools::optimize(pano); } else { if (!quiet) std::cerr << "*** Geometric parameters not optimized" << endl; } if (doLevel) { bool hasVerticalLines=false; CPVector allCP=pano.getCtrlPoints(); if(allCP.size()>0 && (doPairwise || doAutoOpt || doNormalOpt)) { for(size_t i=0;i<allCP.size() && !hasVerticalLines;i++) { hasVerticalLines=(allCP[i].mode==ControlPoint::X); }; }; // straighten only if there are no vertical control points if(hasVerticalLines) { cout << "Skipping automatic leveling because of existing vertical control points." << endl; } else { StraightenPanorama(pano).run(); CenterHorizontally(pano).run(); }; } if (chooseProj) { PanoramaOptions opts = pano.getOptions(); double hfov, vfov; CalculateFitPanorama fitPano = CalculateFitPanorama(pano); fitPano.run(); opts.setHFOV(fitPano.getResultHorizontalFOV()); opts.setHeight(roundi(fitPano.getResultHeight())); vfov = opts.getVFOV(); hfov = opts.getHFOV(); // avoid perspective projection if field of view > 100 deg double mf = 100; if (vfov < mf) { // cylindrical or rectilinear if (hfov < mf) { opts.setProjection(PanoramaOptions::RECTILINEAR); } else { opts.setProjection(PanoramaOptions::CYLINDRICAL); } } // downscale pano a little double sizeFactor = 0.7; pano.setOptions(opts); double w = CalculateOptimalScale::calcOptimalScale(pano); opts.setWidth(roundi(opts.getWidth()*w*sizeFactor), true); pano.setOptions(opts); } if(doPhotometric) { // photometric estimation PanoramaOptions opts = pano.getOptions(); int nPoints = 200; int pyrLevel=3; bool randomPoints = true; nPoints = nPoints * pano.getNrOfImages(); std::vector<vigra_ext::PointPairRGB> points; ProgressDisplay *progressDisplay; if(!quiet) progressDisplay=new StreamProgressDisplay(std::cout); else progressDisplay=new DummyProgressDisplay(); try { loadImgsAndExtractPoints(pano, nPoints, pyrLevel, randomPoints, *progressDisplay, points, !quiet); } catch (std::exception & e) { cerr << "caught exception: " << e.what() << endl; return 1; }; if(!quiet) cout << "\rSelected " << points.size() << " points" << endl; if (points.size() == 0) { cerr << "Error: no overlapping points found, exiting" << endl; return 1; } progressDisplay->startSubtask("Photometric Optimization", 0.0); // first, ensure that vignetting and response coefficients are linked const HuginBase::ImageVariableGroup::ImageVariableEnum vars[] = { HuginBase::ImageVariableGroup::IVE_EMoRParams, HuginBase::ImageVariableGroup::IVE_ResponseType, HuginBase::ImageVariableGroup::IVE_VigCorrMode, HuginBase::ImageVariableGroup::IVE_RadialVigCorrCoeff, HuginBase::ImageVariableGroup::IVE_RadialVigCorrCenterShift }; HuginBase::StandardImageVariableGroups variable_groups(pano); HuginBase::ImageVariableGroup & lenses = variable_groups.getLenses(); for (size_t i = 0; i < lenses.getNumberOfParts(); i++) { std::set<HuginBase::ImageVariableGroup::ImageVariableEnum> links_needed; links_needed.clear(); for (int v = 0; v < 5; v++) { if (!lenses.getVarLinkedInPart(vars[v], i)) { links_needed.insert(vars[v]); } }; if (!links_needed.empty()) { std::set<HuginBase::ImageVariableGroup::ImageVariableEnum>::iterator it; for (it = links_needed.begin(); it != links_needed.end(); it++) { lenses.linkVariablePart(*it, i); } } } HuginBase::SmartPhotometricOptimizer::PhotometricOptimizeMode optmode = HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_LDR; if (opts.outputMode == PanoramaOptions::OUTPUT_HDR) { optmode = HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_HDR; } SmartPhotometricOptimizer photoOpt(pano, progressDisplay, pano.getOptimizeVector(), points, optmode); photoOpt.run(); // calculate the mean exposure. opts.outputExposureValue = CalculateMeanExposure::calcMeanExposure(pano); pano.setOptions(opts); progressDisplay->finishSubtask(); delete progressDisplay; }; // write result OptimizeVector optvec = pano.getOptimizeVector(); UIntSet imgs; fill_set(imgs,0, pano.getNrOfImages()-1); if (output != "") { ofstream of(output.c_str()); pano.printPanoramaScript(of, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile)); } else { pano.printPanoramaScript(cout, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile)); } return 0; }
int main(int argc, char* argv[]) { // parse arguments const char* optstring = "o:i:l:h"; static struct option longOptions[] = { {"output", required_argument, NULL, 'o' }, {"image", required_argument, NULL, 'i' }, {"lines", required_argument, NULL, 'l' }, {"help", no_argument, NULL, 'h' }, 0 }; UIntSet cmdlineImages; int c; int optionIndex = 0; int nrLines = 5; string output; while ((c = getopt_long (argc, argv, optstring, longOptions,&optionIndex)) != -1) { switch (c) { case 'o': output = optarg; break; case 'h': usage(argv[0]); return 0; case 'i': { int imgNr=atoi(optarg); if((imgNr==0) && (strcmp(optarg,"0")!=0)) { cerr << "Could not parse image number."; return 1; }; cmdlineImages.insert(imgNr); }; break; case 'l': nrLines=atoi(optarg); if(nrLines<1) { cerr << "Could not parse number of lines."; return 1; }; break; case ':': cerr <<"Option " << longOptions[optionIndex].name << " requires a number" << endl; return 1; break; case '?': break; default: abort (); } } if (argc - optind != 1) { cout << "Warning: " << argv[0] << " can only work on one project file at one time" << endl << endl; usage(argv[0]); return 1; }; string input=argv[optind]; // read panorama Panorama pano; ifstream prjfile(input.c_str()); if (!prjfile.good()) { cerr << "could not open script : " << input << endl; return 1; } pano.setFilePrefix(hugin_utils::getPathPrefix(input)); DocumentData::ReadWriteError err = pano.readData(prjfile); if (err != DocumentData::SUCCESSFUL) { cerr << "error while parsing panos tool script: " << input << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } if(pano.getNrOfImages()==0) { cerr << "error: project file does not contains any image" << endl; cerr << "aborting processing" << endl; return 1; }; std::vector<size_t> imagesToProcess; if(cmdlineImages.size()==0) { //no image given, process all for(size_t i=0;i<pano.getNrOfImages();i++) { imagesToProcess.push_back(i); }; } else { //check, if given image numbers are valid for(UIntSet::const_iterator it=cmdlineImages.begin();it!=cmdlineImages.end();it++) { if((*it)>=0 && (*it)<pano.getNrOfImages()) { imagesToProcess.push_back(*it); }; }; }; if(imagesToProcess.size()==0) { cerr << "No image to process found" << endl << "Stopping processing" << endl; return 1; }; PT_setProgressFcn(ptProgress); PT_setInfoDlgFcn(ptinfoDlg); cout << argv[0] << " is searching for vertical lines" << endl; #if _WINDOWS //multi threading of image loading results sometime in a race condition //try to prevent this by initialisation of codecManager before //running multi threading part std::string s=vigra::impexListExtensions(); #endif #ifdef HAS_PPL size_t nrCPS=pano.getNrOfCtrlPoints(); Concurrency::parallel_for<size_t>(0,imagesToProcess.size(),[&pano,imagesToProcess,nrLines](size_t i) #else for(size_t i=0;i<imagesToProcess.size();i++) #endif { unsigned int imgNr=imagesToProcess[i]; cout << "Working on image " << pano.getImage(imgNr).getFilename() << endl; // now load and process all images vigra::ImageImportInfo info(pano.getImage(imgNr).getFilename().c_str()); HuginBase::CPVector foundLines; if(info.isGrayscale()) { foundLines=LoadGrayImageAndFindLines(info, pano, imgNr, nrLines); } else { if(info.isColor()) { //colour images foundLines=LoadImageAndFindLines(info, pano, imgNr, nrLines); } else { std::cerr << "Image " << pano.getImage(imgNr).getFilename().c_str() << " has " << info.numBands() << " channels." << std::endl << "Linefind works only with grayscale or color images." << std::endl << "Skipping image." << std::endl; }; }; #ifndef HAS_PPL cout << "Found " << foundLines.size() << " vertical lines" << endl; #endif if(foundLines.size()>0) { for(CPVector::const_iterator cpIt=foundLines.begin(); cpIt!=foundLines.end(); cpIt++) { pano.addCtrlPoint(*cpIt); }; }; } #ifdef HAS_PPL );