void PathFinder::update(double aDelta) { if(m_SearchDelay > 0.0) { m_SearchDelay -= aDelta; if(m_SearchDelay <= 0.0) { m_SearchDelay = 0.0; } return; } while(isSearchingPath() == true && m_DestinationTileIndex != -1) { //Safety check that there is actually something in the openlist if(m_PathNodeOpen.size() == 0) { //set the state to error m_State = StateError; //notify the listener if(m_Listener != NULL) { m_Listener->pathFinderFinishedSearching(this, false); } return; } //Get the first node with the lowest f score //it should be the first element in the open list PathNode* currentNode = m_PathNodeOpen.front(); //add the node tot he closed list and remove it foem the openlist m_PathNodeClosed.push_back(currentNode); m_PathNodeOpen.erase(m_PathNodeOpen.begin()); //check to see if the node is at the destination tile int currentNodeTileIndex = m_Level->getTileIndexForTile(currentNode->getTile()); if(currentNodeTileIndex == m_DestinationTileIndex) { // build the final node path, this will use the current nodes parent node //to track back through the path nodes all the way back to the start buildFinalNodePath(currentNode); //set the state ti path found m_State = StateFoundPath; //notify the listener if(m_Listener != NULL) { m_Listener->pathFinderFinishedSearching(this,true); } return; } //if it is we stop searching and build our final path //if we get here that eamn we haven't reached out destination tile we need //to get the adjecent tiles from the node and add them to the open list std::vector<Tile*> adjacentTiles; //check the tile above, is it walkable addAdjacentTile(adjacentTiles, currentNode->getTile(), 0, -1); // check the tile below, is it walkable addAdjacentTile(adjacentTiles, currentNode->getTile(),0,1); //check the tile tot he left, is it walkable addAdjacentTile(adjacentTiles, currentNode->getTile(),-1,0); //check the tile to the right, is it walkable addAdjacentTile(adjacentTiles, currentNode->getTile(),1,0); //cycle throug the adjacent tiles that are walkable for(int i = 0; i < adjacentTiles.size(); i++) { Tile* adjacentTile = adjacentTiles.at(i); //does the tile exist in the closed list if(doesTileExistInClosedList(adjacentTile) == true) { //if it does disregard continue; } //does the tile exist in the open list if(doesTileExistInOpenList(adjacentTile) == false) { //if it doesn't creat a new path node for the tile PathNode* adjacentNode = new PathNode(adjacentTile); //set the parent node adjacentNode->setParentNode(currentNode); // calculate the g and h scores adjacentNode->setScoreG(currentNode->getScoreG() + adjacentTile->getMovemnetCost()); Tile* destinationTile = m_Level->getTileForIndex(m_DestinationTileIndex); int scoreH = getManhattanDistanceCost(adjacentTile, destinationTile); adjacentNode->setScoreH(scoreH); // add the tile to the open list and sort it addPathNodeToOpenList(adjacentNode); } else { //if it does exist in the open list compare the score and //keep the one with the lower f score, whoch really means //keep the one with the lower g score, since the H score will be identical PathNode* existingNode = getOpenPathNodeForTile(adjacentTile); //if the tile has a lower f score, update the g score //and update the parent node if(currentNode->getScoreG() + adjacentTile->getMovemnetCost() < existingNode->getScoreG()) { existingNode->setScoreG(currentNode->getScoreG() + adjacentTile->getMovemnetCost()); existingNode->setParentNode(currentNode); //re-sort the open list sortOpenList(); } } } } //If the search delay is enabled, set the delay timer if(m_EnableSearchDelay == true) { m_SearchDelay = PATH_FINDING_DELAY; } }
void PathFinder::update(double aDelta) { //Make sure we are in the seaching path state. while(isSearchingPath() == true) { //Next make sure there is at least 1 path node in the open list. //If there isn't it's possible that the destination can not be reached. if(m_OpenList.size() == 0) { m_State = StateError; return; } //Get the first path node from the Open List, because Open List is sorted, //we know this is the Path Node with the lowest F score. PathNode* currentNode = m_OpenList.front(); //Next add it to the closed list. m_ClosedList.push_back(currentNode); //Lastly remove it from the Open List m_OpenList.erase(m_OpenList.begin()); //Next get the current node's tile's index from the level. int currentNodeTileIndex = m_Level->getTileIndexForTile(currentNode->getTile()); if(currentNodeTileIndex == m_DestinationTileIndex) { //If the current node's tile index is the same as the destination tile, the we //have reached out destination tile and now know the shortest path. do { //If the parent node doesn't equal NULL, and the current node to the final path list. if(currentNode->getParentNode() != NULL) { m_FinalPath.insert(m_FinalPath.begin(), currentNode); } //Set the node's tile isPath flag to true currentNode->getTile()->setIsPath(true); //Set the current node to the parent node. currentNode = currentNode->getParentNode(); } while(currentNode != NULL); //Set the state to the PathFound m_State = StatePathFound; return; } //Now, if we got here, it means we haven't reached the destination, we need to // get the current node's adjacent tiles and calculate their path scores. std::vector<Tile*> adjacentTiles; addAdjacentTile(adjacentTiles, currentNode->getTile(), -1, 0); //Left addAdjacentTile(adjacentTiles, currentNode->getTile(), 1, 0); //Right addAdjacentTile(adjacentTiles, currentNode->getTile(), 0, -1); //Up addAdjacentTile(adjacentTiles, currentNode->getTile(), 0, 1); //Down //Cycle through the adjacent tiles for(int i = 0; i < adjacentTiles.size(); i++) { Tile* adjacentTile = adjacentTiles.at(i); //Next we need to check if the adjacent tile is already in the close list, //if it is, then we can ignore this tile. if(isTileInClosedList(adjacentTile) == true) { continue; } //Then we need to check if the adjacent tile is already in the Open List if(isTileInOpenList(adjacentTile) == true) { //If we got here, then the tile is in the Open list alreadu and we have to determine //if the existing tile's score is lower or the adjacent tile. PathNode* existingNode = getPathNodeFromOpenList(adjacentTile); //Check to see if the adjacent node has a higher G Score //(since the h scores will be identical) //than the existing node's G score. if(existingNode->getScoreG() > currentNode->getScoreG() +1) { //Update the existing node's parent. existingNode->setParentNode(currentNode); //Set the lower G score existingNode->setScoreG(currentNode->getScoreG() +1); //Sort the OpenList sortOpenList(); } } else { //If we got here then the tile doesn't exist in the Open or Closed list. //Let's make a new PathNode object and calculate it's tile score. PathNode* adjacentNode = new PathNode(adjacentTile); //Set the pathNode's parent. adjacentNode->setParentNode(currentNode); //Calculate the G score, it's a Parent node's G score plus 1. adjacentNode->setScoreG(currentNode->getScoreG() +1); //Calculate the H score, remember we use the manhattan distance method. adjacentNode->setScoreH(getManhattanDistanceCost(adjacentTile, m_Level->getTileForIndex(m_DestinationTileIndex))); //Lastly add is to the Open list, calling this method will sort the open list. addNodeToOpenList(adjacentNode); } } } }