// #pragma weak identifier // #pragma weak identifier '=' identifier void PragmaWeakHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &WeakTok) { SourceLocation WeakLoc = WeakTok.getLocation(); Token Tok; PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "weak"; return; } Token WeakName = Tok; bool HasAlias = false; Token AliasName; PP.Lex(Tok); if (Tok.is(tok::equal)) { HasAlias = true; PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "weak"; return; } AliasName = Tok; PP.Lex(Tok); } if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "weak"; return; } if (HasAlias) { Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 3, llvm::alignOf<Token>()); Token &pragmaUnusedTok = Toks[0]; pragmaUnusedTok.startToken(); pragmaUnusedTok.setKind(tok::annot_pragma_weakalias); pragmaUnusedTok.setLocation(WeakLoc); Toks[1] = WeakName; Toks[2] = AliasName; PP.EnterTokenStream(Toks, 3, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); } else { Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 2, llvm::alignOf<Token>()); Token &pragmaUnusedTok = Toks[0]; pragmaUnusedTok.startToken(); pragmaUnusedTok.setKind(tok::annot_pragma_weak); pragmaUnusedTok.setLocation(WeakLoc); Toks[1] = WeakName; PP.EnterTokenStream(Toks, 2, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); } }
/// \brief Handle '#pragma omp ...' when OpenMP is enabled. /// void PragmaOpenMPHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &FirstTok) { SmallVector<Token, 16> Pragma; Token Tok; Tok.startToken(); Tok.setKind(tok::annot_pragma_openmp); Tok.setLocation(FirstTok.getLocation()); while (Tok.isNot(tok::eod)) { Pragma.push_back(Tok); PP.Lex(Tok); } SourceLocation EodLoc = Tok.getLocation(); Tok.startToken(); Tok.setKind(tok::annot_pragma_openmp_end); Tok.setLocation(EodLoc); Pragma.push_back(Tok); Token *Toks = new Token[Pragma.size()]; std::copy(Pragma.begin(), Pragma.end(), Toks); PP.EnterTokenStream(Toks, Pragma.size(), /*DisableMacroExpansion=*/true, /*OwnsTokens=*/true); }
void PragmaOpenCLExtensionHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &Tok) { PP.LexUnexpandedToken(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "OPENCL"; return; } IdentifierInfo *ename = Tok.getIdentifierInfo(); SourceLocation NameLoc = Tok.getLocation(); PP.Lex(Tok); if (Tok.isNot(tok::colon)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_colon) << ename; return; } PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_enable_disable); return; } IdentifierInfo *op = Tok.getIdentifierInfo(); unsigned state; if (op->isStr("enable")) { state = 1; } else if (op->isStr("disable")) { state = 0; } else { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_enable_disable); return; } SourceLocation StateLoc = Tok.getLocation(); PP.Lex(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "OPENCL EXTENSION"; return; } OpenCLExtData data(ename, state); Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 1, llvm::alignOf<Token>()); new (Toks) Token(); Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_opencl_extension); Toks[0].setLocation(NameLoc); Toks[0].setAnnotationValue(data.getOpaqueValue()); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { Callbacks->PragmaOpenCLExtension(NameLoc, ename, StateLoc, state); } }
// #pragma GCC visibility comes in two variants: // 'push' '(' [visibility] ')' // 'pop' void PragmaGCCVisibilityHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &VisTok) { SourceLocation VisLoc = VisTok.getLocation(); Token Tok; PP.LexUnexpandedToken(Tok); const IdentifierInfo *PushPop = Tok.getIdentifierInfo(); const IdentifierInfo *VisType; if (PushPop && PushPop->isStr("pop")) { VisType = 0; } else if (PushPop && PushPop->isStr("push")) { PP.LexUnexpandedToken(Tok); if (Tok.isNot(tok::l_paren)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "visibility"; return; } PP.LexUnexpandedToken(Tok); VisType = Tok.getIdentifierInfo(); if (!VisType) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "visibility"; return; } PP.LexUnexpandedToken(Tok); if (Tok.isNot(tok::r_paren)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "visibility"; return; } } else { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "visibility"; return; } PP.LexUnexpandedToken(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "visibility"; return; } Token *Toks = new Token[1]; Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_vis); Toks[0].setLocation(VisLoc); Toks[0].setAnnotationValue( const_cast<void*>(static_cast<const void*>(VisType))); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/true); }
// #pragma redefine_extname identifier identifier void PragmaRedefineExtnameHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &RedefToken) { SourceLocation RedefLoc = RedefToken.getLocation(); Token Tok; PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "redefine_extname"; return; } Token RedefName = Tok; PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "redefine_extname"; return; } Token AliasName = Tok; PP.Lex(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "redefine_extname"; return; } Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 3, llvm::alignOf<Token>()); Token &pragmaRedefTok = Toks[0]; pragmaRedefTok.startToken(); pragmaRedefTok.setKind(tok::annot_pragma_redefine_extname); pragmaRedefTok.setLocation(RedefLoc); Toks[1] = RedefName; Toks[2] = AliasName; PP.EnterTokenStream(Toks, 3, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
void PragmaFPContractHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &Tok) { tok::OnOffSwitch OOS; if (PP.LexOnOffSwitch(OOS)) return; Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 1, llvm::alignOf<Token>()); new (Toks) Token(); Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_fp_contract); Toks[0].setLocation(Tok.getLocation()); Toks[0].setAnnotationValue(reinterpret_cast<void*>( static_cast<uintptr_t>(OOS))); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
// #pragma ms_struct on // #pragma ms_struct off void PragmaMSStructHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &MSStructTok) { Sema::PragmaMSStructKind Kind = Sema::PMSST_OFF; Token Tok; PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct); return; } const IdentifierInfo *II = Tok.getIdentifierInfo(); if (II->isStr("on")) { Kind = Sema::PMSST_ON; PP.Lex(Tok); } else if (II->isStr("off") || II->isStr("reset")) PP.Lex(Tok); else { PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct); return; } if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "ms_struct"; return; } Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 1, llvm::alignOf<Token>()); new (Toks) Token(); Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_msstruct); Toks[0].setLocation(MSStructTok.getLocation()); Toks[0].setAnnotationValue(reinterpret_cast<void*>( static_cast<uintptr_t>(Kind))); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
// #pragma unused(identifier) void PragmaUnusedHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &UnusedTok) { // FIXME: Should we be expanding macros here? My guess is no. SourceLocation UnusedLoc = UnusedTok.getLocation(); // Lex the left '('. Token Tok; PP.Lex(Tok); if (Tok.isNot(tok::l_paren)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "unused"; return; } // Lex the declaration reference(s). SmallVector<Token, 5> Identifiers; SourceLocation RParenLoc; bool LexID = true; while (true) { PP.Lex(Tok); if (LexID) { if (Tok.is(tok::identifier)) { Identifiers.push_back(Tok); LexID = false; continue; } // Illegal token! PP.Diag(Tok.getLocation(), diag::warn_pragma_unused_expected_var); return; } // We are execting a ')' or a ','. if (Tok.is(tok::comma)) { LexID = true; continue; } if (Tok.is(tok::r_paren)) { RParenLoc = Tok.getLocation(); break; } // Illegal token! PP.Diag(Tok.getLocation(), diag::warn_pragma_unused_expected_punc); return; } PP.Lex(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "unused"; return; } // Verify that we have a location for the right parenthesis. assert(RParenLoc.isValid() && "Valid '#pragma unused' must have ')'"); assert(!Identifiers.empty() && "Valid '#pragma unused' must have arguments"); // For each identifier token, insert into the token stream a // annot_pragma_unused token followed by the identifier token. // This allows us to cache a "#pragma unused" that occurs inside an inline // C++ member function. Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 2 * Identifiers.size(), llvm::alignOf<Token>()); for (unsigned i=0; i != Identifiers.size(); i++) { Token &pragmaUnusedTok = Toks[2*i], &idTok = Toks[2*i+1]; pragmaUnusedTok.startToken(); pragmaUnusedTok.setKind(tok::annot_pragma_unused); pragmaUnusedTok.setLocation(UnusedLoc); idTok = Identifiers[i]; } PP.EnterTokenStream(Toks, 2*Identifiers.size(), /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
// #pragma 'align' '=' {'native','natural','mac68k','power','reset'} // #pragma 'options 'align' '=' {'native','natural','mac68k','power','reset'} static void ParseAlignPragma(Preprocessor &PP, Token &FirstTok, bool IsOptions) { Token Tok; if (IsOptions) { PP.Lex(Tok); if (Tok.isNot(tok::identifier) || !Tok.getIdentifierInfo()->isStr("align")) { PP.Diag(Tok.getLocation(), diag::warn_pragma_options_expected_align); return; } } PP.Lex(Tok); if (Tok.isNot(tok::equal)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_align_expected_equal) << IsOptions; return; } PP.Lex(Tok); if (Tok.isNot(tok::identifier)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << (IsOptions ? "options" : "align"); return; } Sema::PragmaOptionsAlignKind Kind = Sema::POAK_Natural; const IdentifierInfo *II = Tok.getIdentifierInfo(); if (II->isStr("native")) Kind = Sema::POAK_Native; else if (II->isStr("natural")) Kind = Sema::POAK_Natural; else if (II->isStr("packed")) Kind = Sema::POAK_Packed; else if (II->isStr("power")) Kind = Sema::POAK_Power; else if (II->isStr("mac68k")) Kind = Sema::POAK_Mac68k; else if (II->isStr("reset")) Kind = Sema::POAK_Reset; else { PP.Diag(Tok.getLocation(), diag::warn_pragma_align_invalid_option) << IsOptions; return; } PP.Lex(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << (IsOptions ? "options" : "align"); return; } Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 1, llvm::alignOf<Token>()); new (Toks) Token(); Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_align); Toks[0].setLocation(FirstTok.getLocation()); Toks[0].setAnnotationValue(reinterpret_cast<void*>( static_cast<uintptr_t>(Kind))); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
// #pragma pack(...) comes in the following delicious flavors: // pack '(' [integer] ')' // pack '(' 'show' ')' // pack '(' ('push' | 'pop') [',' identifier] [, integer] ')' void PragmaPackHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, Token &PackTok) { SourceLocation PackLoc = PackTok.getLocation(); Token Tok; PP.Lex(Tok); if (Tok.isNot(tok::l_paren)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "pack"; return; } Sema::PragmaPackKind Kind = Sema::PPK_Default; IdentifierInfo *Name = 0; Token Alignment; Alignment.startToken(); SourceLocation LParenLoc = Tok.getLocation(); PP.Lex(Tok); if (Tok.is(tok::numeric_constant)) { Alignment = Tok; PP.Lex(Tok); // In MSVC/gcc, #pragma pack(4) sets the alignment without affecting // the push/pop stack. // In Apple gcc, #pragma pack(4) is equivalent to #pragma pack(push, 4) if (PP.getLangOpts().ApplePragmaPack) Kind = Sema::PPK_Push; } else if (Tok.is(tok::identifier)) { const IdentifierInfo *II = Tok.getIdentifierInfo(); if (II->isStr("show")) { Kind = Sema::PPK_Show; PP.Lex(Tok); } else { if (II->isStr("push")) { Kind = Sema::PPK_Push; } else if (II->isStr("pop")) { Kind = Sema::PPK_Pop; } else { PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_invalid_action); return; } PP.Lex(Tok); if (Tok.is(tok::comma)) { PP.Lex(Tok); if (Tok.is(tok::numeric_constant)) { Alignment = Tok; PP.Lex(Tok); } else if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); PP.Lex(Tok); if (Tok.is(tok::comma)) { PP.Lex(Tok); if (Tok.isNot(tok::numeric_constant)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed); return; } Alignment = Tok; PP.Lex(Tok); } } else { PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed); return; } } } } else if (PP.getLangOpts().ApplePragmaPack) { // In MSVC/gcc, #pragma pack() resets the alignment without affecting // the push/pop stack. // In Apple gcc #pragma pack() is equivalent to #pragma pack(pop). Kind = Sema::PPK_Pop; } if (Tok.isNot(tok::r_paren)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "pack"; return; } SourceLocation RParenLoc = Tok.getLocation(); PP.Lex(Tok); if (Tok.isNot(tok::eod)) { PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "pack"; return; } PragmaPackInfo *Info = (PragmaPackInfo*) PP.getPreprocessorAllocator().Allocate( sizeof(PragmaPackInfo), llvm::alignOf<PragmaPackInfo>()); new (Info) PragmaPackInfo(); Info->Kind = Kind; Info->Name = Name; Info->Alignment = Alignment; Info->LParenLoc = LParenLoc; Info->RParenLoc = RParenLoc; Token *Toks = (Token*) PP.getPreprocessorAllocator().Allocate( sizeof(Token) * 1, llvm::alignOf<Token>()); new (Toks) Token(); Toks[0].startToken(); Toks[0].setKind(tok::annot_pragma_pack); Toks[0].setLocation(PackLoc); Toks[0].setAnnotationValue(static_cast<void*>(Info)); PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false); }
void OMPPragmaHandler::HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer, SourceRange IntroducerRange, Token &FirstTok) { Diags.Report(IntroducerRange.getBegin(), DiagFoundPragmaStmt); // TODO: Clean this up because I'm too lazy to now PragmaDirective * DirectivePointer = new PragmaDirective; PragmaDirective &Directive = *DirectivePointer; // First lex the pragma statement extracting the variable names SourceLocation Loc = IntroducerRange.getBegin(); Token Tok = FirstTok; StringRef ident = getIdentifier(Tok); if (ident != "omp") { LexUntil(PP, Tok, clang::tok::eod); return; } PP.Lex(Tok); ident = getIdentifier(Tok); bool isParallel = false; bool isThreadPrivate = false; if (ident == "parallel") { PragmaConstruct C; C.Type = ParallelConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); isParallel = true; } else if (ident == "sections" || ident == "section" || ident == "task" || ident == "taskyield" || ident == "taskwait" || ident == "atomic" || ident == "ordered") { Diags.Report(Tok.getLocation(), DiagUnsupportedConstruct); LexUntil(PP, Tok, clang::tok::eod); return; } else if (ident == "for") { PragmaConstruct C; C.Type = ForConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); } else if (ident == "threadprivate") { isThreadPrivate = true; PragmaConstruct C; C.Type = ThreadprivateConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); } else if (ident == "single") { PragmaConstruct C; C.Type = SingleConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); } else if (ident == "master") { PragmaConstruct C; C.Type = MasterConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); } else if (ident == "critical" || ident == "flush") { // Ignored Directive // (Critical, Flush) LexUntil(PP, Tok, clang::tok::eod); return; } else if (ident == "barrier") { PragmaConstruct C; C.Type = BarrierConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); } else { Diags.Report(Tok.getLocation(), DiagUnknownDirective); return; } if (!isThreadPrivate) { PP.Lex(Tok); } if (isParallel) { ident = getIdentifier(Tok); if (ident == "sections") { Diags.Report(Tok.getLocation(), DiagUnsupportedConstruct); LexUntil(PP, Tok, clang::tok::eod); return; } else if (ident == "for") { PragmaConstruct C; C.Type = ForConstruct; C.Range = getTokenRange(Tok, PP); Directive.insertConstruct(C); PP.Lex(Tok); } else { // Just a standard "#pragma omp parallel" clause if (Tok.isNot(clang::tok::eod) && PragmaDirective::getClauseType(ident) == UnknownClause) { Diags.Report(Tok.getLocation(), DiagUnknownClause); return; } } } // If we've made it this far then we either have: // "#pragma omp parallel", // "#pragma omp parallel for", // "#pragma omp for", // "#pragma omp threadprivate // Need to read in the options, if they exists // Don't really care about them unless there exists a private(...) list // In which case, get the variables inside that list // But we read them all in anyway. // There's also threadprivate, which won't have any clauses, but will have // a list of private variables just after the threadprivate directive // Treating threadprivate as a clause and directive at the same time. while(Tok.isNot(clang::tok::eod)) { PragmaClause C; ident = getIdentifier(Tok); C.Type = PragmaDirective::getClauseType(ident); if (C.Type == UnknownClause) { Diags.Report(Tok.getLocation(), DiagUnknownClause); return; } SourceLocation clauseStart = Tok.getLocation(); SourceLocation clauseEnd = PP.getLocForEndOfToken(clauseStart); PP.Lex(Tok); if (Tok.is(clang::tok::l_paren)) { if (!handleList(Tok, PP, C)) { Diags.Report(clauseStart, DiagMalformedStatement); LexUntil(PP, Tok, clang::tok::eod); return; } clauseEnd = PP.getLocForEndOfToken(Tok.getLocation()); // Eat the clang::tok::r_paren PP.Lex(Tok); } C.Range = SourceRange(clauseStart, clauseEnd); Directive.insertClause(C); } SourceLocation EndLoc = PP.getLocForEndOfToken(Tok.getLocation()); Directive.setRange(SourceRange(Loc, EndLoc)); Directives.insert(std::make_pair(Loc.getRawEncoding(), DirectivePointer)); // Then replace with parseable compound statement to catch in Sema, and // references to private variables; // { // i; // j; // k; // } // If it's a threadprivate directive, then we skip this completely if (isThreadPrivate) { return; } set<IdentifierInfo *> PrivateVars = Directive.getPrivateIdentifiers(); int tokenCount = 2 + 2 * PrivateVars.size(); int currentToken = 0; Token * Toks = new Token[tokenCount]; Toks[currentToken++] = createToken(Loc, clang::tok::l_brace); set<IdentifierInfo *>::iterator PrivIt; for (PrivIt = PrivateVars.begin(); PrivIt != PrivateVars.end(); PrivIt++) { Toks[currentToken++] = createToken(Loc, clang::tok::identifier, *PrivIt); Toks[currentToken++] = createToken(Loc, clang::tok::semi); } Toks[currentToken++] = createToken(EndLoc, clang::tok::r_brace); assert(currentToken == tokenCount); Diags.setDiagnosticGroupMapping("unused-value", clang::diag::MAP_IGNORE, Loc); Diags.setDiagnosticGroupMapping("unused-value", clang::diag::MAP_WARNING, EndLoc); PP.EnterTokenStream(Toks, tokenCount, true, true); }
/// HighlightMacros - This uses the macro table state from the end of the /// file, to re-expand macros and insert (into the HTML) information about the /// macro expansions. This won't be perfectly perfect, but it will be /// reasonably close. void html::HighlightMacros(Rewriter &R, FileID FID, Preprocessor& PP) { // Re-lex the raw token stream into a token buffer. const SourceManager &SM = PP.getSourceManager(); std::vector<Token> TokenStream; Lexer L(FID, SM, PP.getLangOptions()); // Lex all the tokens in raw mode, to avoid entering #includes or expanding // macros. while (1) { Token Tok; L.LexFromRawLexer(Tok); // If this is a # at the start of a line, discard it from the token stream. // We don't want the re-preprocess step to see #defines, #includes or other // preprocessor directives. if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) continue; // If this is a ## token, change its kind to unknown so that repreprocessing // it will not produce an error. if (Tok.is(tok::hashhash)) Tok.setKind(tok::unknown); // If this raw token is an identifier, the raw lexer won't have looked up // the corresponding identifier info for it. Do this now so that it will be // macro expanded when we re-preprocess it. if (Tok.is(tok::identifier)) { // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Tok.setKind(PP.LookUpIdentifierInfo(Tok)->getTokenID()); } TokenStream.push_back(Tok); if (Tok.is(tok::eof)) break; } // Temporarily change the diagnostics object so that we ignore any generated // diagnostics from this pass. IgnoringDiagClient TmpDC; Diagnostic TmpDiags(&TmpDC); Diagnostic *OldDiags = &PP.getDiagnostics(); PP.setDiagnostics(TmpDiags); // Inform the preprocessor that we don't want comments. PP.SetCommentRetentionState(false, false); // Enter the tokens we just lexed. This will cause them to be macro expanded // but won't enter sub-files (because we removed #'s). PP.EnterTokenStream(&TokenStream[0], TokenStream.size(), false, false); TokenConcatenation ConcatInfo(PP); // Lex all the tokens. Token Tok; PP.Lex(Tok); while (Tok.isNot(tok::eof)) { // Ignore non-macro tokens. if (!Tok.getLocation().isMacroID()) { PP.Lex(Tok); continue; } // Okay, we have the first token of a macro expansion: highlight the // instantiation by inserting a start tag before the macro instantiation and // end tag after it. std::pair<SourceLocation, SourceLocation> LLoc = SM.getInstantiationRange(Tok.getLocation()); // Ignore tokens whose instantiation location was not the main file. if (SM.getFileID(LLoc.first) != FID) { PP.Lex(Tok); continue; } assert(SM.getFileID(LLoc.second) == FID && "Start and end of expansion must be in the same ultimate file!"); std::string Expansion = PP.getSpelling(Tok); unsigned LineLen = Expansion.size(); Token PrevTok = Tok; // Okay, eat this token, getting the next one. PP.Lex(Tok); // Skip all the rest of the tokens that are part of this macro // instantiation. It would be really nice to pop up a window with all the // spelling of the tokens or something. while (!Tok.is(tok::eof) && SM.getInstantiationLoc(Tok.getLocation()) == LLoc.first) { // Insert a newline if the macro expansion is getting large. if (LineLen > 60) { Expansion += "<br>"; LineLen = 0; } LineLen -= Expansion.size(); // If the tokens were already space separated, or if they must be to avoid // them being implicitly pasted, add a space between them. if (Tok.hasLeadingSpace() || ConcatInfo.AvoidConcat(PrevTok, Tok)) Expansion += ' '; // Escape any special characters in the token text. Expansion += EscapeText(PP.getSpelling(Tok)); LineLen += Expansion.size(); PrevTok = Tok; PP.Lex(Tok); } // Insert the expansion as the end tag, so that multi-line macros all get // highlighted. Expansion = "<span class='expansion'>" + Expansion + "</span></span>"; HighlightRange(R, LLoc.first, LLoc.second, "<span class='macro'>", Expansion.c_str()); } // Restore diagnostics object back to its own thing. PP.setDiagnostics(*OldDiags); }