CxUnivarHandler::CxUnivarHandler(EnvPtr , ProblemPtr problem) : eTol_(1e-6), vTol_(1e-5) { problem_ = problem; logger_ = (LoggerPtr) new Logger((LogLevel) 0 ); tmpX_.resize(problem->getNumVars(), 0.0); grad_.resize(problem->getNumVars(), 0.0); }
void loadProblem(EnvPtr env, MINOTAUR_AMPL::AMPLInterface* iface, ProblemPtr &oinst, double *obj_sense) { Timer *timer = env->getNewTimer(); OptionDBPtr options = env->getOptions(); JacobianPtr jac; HessianOfLagPtr hess; const std::string me("qg: "); timer->start(); oinst = iface->readInstance(options->findString("problem_file")->getValue()); env->getLogger()->msgStream(LogInfo) << me << "time used in reading instance = " << std::fixed << std::setprecision(2) << timer->query() << std::endl; // display the problem oinst->calculateSize(); if (options->findBool("display_problem")->getValue()==true) { oinst->write(env->getLogger()->msgStream(LogNone), 12); } if (options->findBool("display_size")->getValue()==true) { oinst->writeSize(env->getLogger()->msgStream(LogNone)); } // create the jacobian if (false==options->findBool("use_native_cgraph")->getValue()) { jac = (MINOTAUR_AMPL::AMPLJacobianPtr) new MINOTAUR_AMPL::AMPLJacobian(iface); oinst->setJacobian(jac); // create the hessian hess = (MINOTAUR_AMPL::AMPLHessianPtr) new MINOTAUR_AMPL::AMPLHessian(iface); oinst->setHessian(hess); } // set initial point oinst->setInitialPoint(iface->getInitialPoint(), oinst->getNumVars()-iface->getNumDefs()); if (oinst->getObjective() && oinst->getObjective()->getObjectiveType()==Maximize) { *obj_sense = -1.0; env->getLogger()->msgStream(LogInfo) << me << "objective sense: maximize (will be converted to Minimize)" << std::endl; } else { *obj_sense = 1.0; env->getLogger()->msgStream(LogInfo) << me << "objective sense: minimize" << std::endl; } delete timer; }
CxUnivarHandler::CxUnivarHandler(EnvPtr , ProblemPtr problem) : eTol_(1e-6), vTol_(1e-5) { problem_ = problem; //logger_ = (LoggerPtr) new Logger((LogLevel) // env->getOptions()->findInt("handler_log_level")->getValue()); logger_ = (LoggerPtr) new Logger((LogLevel) 0 ); tmpX_.resize(problem->getNumVars(), 0.0); grad_.resize(problem->getNumVars(), 0.0); }
int main() { // Generate output. ofstream output; output.open("numknapcov.txt"); // Generate input. ifstream input; input.open("list.txt"); // Check if input is opened succesfully. if (input.is_open() == false) { cerr << "Input file read error." << endl; output << "Input file read error." << endl; exit(0); } /********************************************************************************/ // Headers for output data. output << "Statistics of knapsack cover cuts applied to root relaxation." << endl; output << "problem " << "vars " << "cons " << "lincons " << "knapcons " << "knapcov " << "knaps " << "totalcuts " << "cuts " << "violknapcuts " << "initobj " << "endobj " << "gapclosed " << "timeinit " << "timecut " << "timemod" << endl; /********************************************************************************/ // loop to test all problems in list.txt while (input.good()) { // problem name string pname; getline(input, pname); // At the end of file just exit from loop. if (pname.empty()) { break; } cout << "Problem considered is: " << pname << endl; // Real stuff begins. // Ampl interface, jacobian and hessian. MINOTAUR_AMPL::AMPLInterfacePtr iface = MINOTAUR_AMPL::AMPLInterfacePtr(); JacobianPtr jPtr; //! Jacobian read from AMPL HessianOfLagPtr hPtr; //! Hessian read from AMPL // environment, timers and options: EnvPtr env = (EnvPtr) new Environment(); OptionDBPtr options; // problem to be solved. ProblemPtr minlp; // solver pointers, including status. FilterSQPEngine e(env); EngineStatus status; // Presolver. PresolverPtr pres; // give parameters. UInt argc2 = 2; std::string arg1 = "bnb"; std::string arg2 = pname; char** argv2 = new char* [2]; argv2[0] = &arg1[0]; argv2[1] = &arg2[0]; // Default options env->getOptions()->findBool("presolve")->setValue(false); env->getOptions()->findBool("use_native_cgraph")->setValue(true); env->getOptions()->findBool("nl_presolve")->setValue(false); // parse options env->readOptions(argc2, argv2); options = env->getOptions(); options->findString("interface_type")->setValue("AMPL"); // read minlp from AMPL. iface = (MINOTAUR_AMPL::AMPLInterfacePtr) new MINOTAUR_AMPL::AMPLInterface(env); minlp = iface->readInstance(pname); // Timer is obtained. Timer * timer = env->getNewTimer(); // Nonlinearize objective function. Bool MIPCONSIDERED = false; if (MIPCONSIDERED == true) { ObjectivePtr initobjfun = minlp->getObjective(); if (initobjfun->getObjectiveType() == Maximize) { cerr << "Objective type is Maximize, change it to Minimize." << endl; exit(0); } LinearFunctionPtr lfinitobj = initobjfun->getLinearFunction(); // NonlinearFunctionPtr nlfobj = (NonlinearFunctionPtr) new NonlinearFunction(); CGraphPtr nlfobj = (CGraphPtr) new CGraph(); logobj(lfinitobj, nlfobj); FunctionPtr logobjfun = (FunctionPtr) new Function(nlfobj); ObjectiveType otyp = Minimize; minlp->changeObj(logobjfun, 0); } minlp->calculateSize(); minlp->prepareForSolve(); // Change format of problem to be suitable for Minotaur. HandlerVector handlers; // Use presolver to standardize problem. //pres = (PresolverPtr) new Presolver(minlp, env, handlers); //pres->standardize(); minlp->calculateSize(); minlp->prepareForSolve(); minlp->setJacobian(jPtr); minlp->setHessian(hPtr); minlp->setNativeDer(); minlp->calculateSize(); minlp->prepareForSolve(); minlp->setNativeDer(); //minlp->write(std::cout); /**************************************************************/ // Given problem statistics . // Number of variables. UInt numvars = minlp->getNumVars(); // number of constraints. UInt numcons = minlp->getNumCons(); // linear constraints. UInt numlin = minlp->getNumLinCons(); /*************************************************************/ // set option for engine to resolve to solve NLP repeatedly. // Probbaly does nothing. e.setOptionsForRepeatedSolve(); // load problem. e.load(minlp); // Solve problem. timer->start(); status = e.solve(); /********************************************************************/ // Solution time of relaxation. Double timeinit = timer->query(); timer->stop(); // Solution objective value Double initobj = e.getSolutionValue(); /********************************************************************/ std::cout << "Relaxation objective value = " << initobj << std::endl; // Get solution from engine. ConstSolutionPtr sol = e.getSolution(); // Construct relaxation. RelaxationPtr rel = (RelaxationPtr) new Relaxation(minlp); // Time for cut generation. timer->start(); // Generate kanpsack cover cuts. CoverCutGeneratorPtr knapgen = (CoverCutGeneratorPtr) new CoverCutGenerator(rel, sol, env); /*******************************************************************/ Double timecut = timer->query(); timer->stop(); /*******************************************************************/ // Get statistics of cut generator. ConstCovCutGenStatsPtr knapstats = knapgen->getStats(); /*******************************************************************/ // Knapsack cut generator statistics. // knapsack constraints. UInt numknap = (knapgen->getKnapsackList())->getNumKnaps(); // knapsacks that has cover sets. UInt numknapcov = knapgen->getNumCons(); // knapsack subproblems solved, i.e number of lifting subproblems solved. UInt knaps = knapstats->knaps; // cover cuts including duplicates. UInt totalcuts = knapstats->totalcuts; // cuts without duplicates. UInt numknapcuts = knapstats->cuts; // violated cuts. UInt violknapcuts = knapstats->violated; /*******************************************************************/ std::cout << "Number of knapsack cover cuts to be applied is: " << knapstats->violated << std::endl; // Get the violated cuts from generator. CutVector knapcuts = knapgen->getViolatedCutList(); // Iterators for cuts CutVectorConstIter it; CutVectorConstIter begin = knapcuts.begin(); CutVectorConstIter end = knapcuts.end(); // Apply the cuts to the problem. // Violation list. DoubleVector knapviols = knapgen->getViolList(); UInt curknap = 0; Double maxviol = 0.0; for (it=begin; it!=end; ++it) { std::cout << "Violation obtained from this constraint is: " << knapviols[curknap] << std::endl; ConstraintPtr newcons = rel->newConstraint((*it)->getFunction(), (*it)->getLb(), (*it)->getUb()); if (maxviol < knapviols[curknap]) { maxviol = knapviols[curknap]; } // add constraint to engine does not do anything. // Thus, we add constraint to the relaxation and reload it to engine. // e.addConstraint(newcons); } /*******************************************************************/ // Solution time of knapsack cover cuts added problem. Double timemod = 0.0; // Objective value after adding knapsack cover cuts. Double endobj = 0.0; // Gap closed by using knapsack cover cuts. Double gapknap = 0.0; /*******************************************************************/ if (violknapcuts >= 1) { // Reload problem to engine. // Check if we should reload the modified problem. e.clear(); const Double * xupdated; if (WARMSTART == 1) { // Set initial point as the solution of root solution. xupdated = sol->getPrimal(); rel->setInitialPoint(xupdated); } // Load the modified problem. e.load(rel); // warmstart continues. if (WARMSTART == 1) { // Before presolve, we set initial primal and // dual solutions as the root solution. SolutionPtr solupdated = (SolutionPtr) new Solution(initobj, xupdated, rel); // Create new dual solution. const Double * dualofvars = sol->getDualOfVars(); solupdated->setDualOfVars(dualofvars); const Double * initdualofcons = sol->getDualOfCons(); UInt numconsupdated = rel->getNumCons(); Double * dualofcons = new Double[numconsupdated]; memcpy(dualofcons, initdualofcons, numcons*sizeof(Double)); for (UInt indexx = numcons; indexx < numconsupdated; ++indexx) { dualofcons[indexx] = 0.0; } solupdated->setDualOfCons(dualofcons); FilterWSPtr warmstart = (FilterWSPtr) new FilterSQPWarmStart(); warmstart->setPoint(solupdated); e.loadFromWarmStart(warmstart); delete [] dualofcons; } // Solution time after adding knapsack cover cuts to relaxation. timer->start(); // Resolve the problem. e.solve(); /*******************************************************************/ // Solution time of knapsack cover cuts added problem. timemod = timer->query(); timer->stop(); // Objective value after adding knapsack cover cuts. endobj = e.getSolutionValue(); // Gap closed by using knapsack cover cuts. gapknap = (endobj-initobj)/fabs(initobj) * 100; /*******************************************************************/ } else { /*******************************************************************/ // Solution time of knapsack cover cuts added problem. timemod = timeinit; // Objective value after adding knapsack cover cuts. endobj = initobj; // Gap closed by using knapsack cover cuts. gapknap = 0.0; /*******************************************************************/ } std::cout << "Objective value of relaxation after adding cuts: " << endobj << std::endl; cout << pname << " " << numvars << " " << numcons << " " << numlin << " " << numknap << " " << numknapcov << " " << knaps << " " << totalcuts << " " << numknapcuts << " " << violknapcuts << std::fixed << std::setprecision(2) << " " << initobj << " " << endobj << " " << gapknap << " " << timeinit << " " << timecut << " " << timemod << endl; if (numknap >= 1) { // Save output data. output << pname << " " << numvars << " " << numcons << " " << numlin << " " << numknap << " " << numknapcov << " " << knaps << " " << totalcuts << " " << numknapcuts << " " << violknapcuts << std::fixed << std::setprecision(2) << " " << initobj << " " << endobj << " " << gapknap << " " << timeinit << " " << timecut << " " << timemod << endl; } delete iface; delete [] argv2; } output.close(); input.close(); return 0; }
//! main routine implementing outer approximation int main(int argc, char** argv) { //! Declaration of Variables ============================================ //! interface to AMPL (NULL): MINOTAUR_AMPL::AMPLInterfacePtr iface = MINOTAUR_AMPL::AMPLInterfacePtr(); MINOTAUR_AMPL::JacobianPtr jPtr; //! Jacobian read from AMPL MINOTAUR_AMPL::HessianOfLagPtr hPtr; //! Hessian read from AMPL //! environment, timers, options: EnvPtr env = (EnvPtr) new Environment(); TimerFactory *tFactory = new TimerFactory(); Timer *timer=tFactory->getTimer(); OptionDBPtr options; //! AMPL and MINOTAUR options //! problem pointers (MINLP, NLP, MILP): ProblemPtr minlp; //! MINLP instance to be solved ProblemPtr milp; //! MILP master problem //! solver pointers, including status FilterSQPEngine e(env); //! NLP engine: FilterSQP EngineStatus status; //! pointers to manipulate variables & constraints VariablePtr v, objVar; //! variable pointer (objective) ObjectivePtr objFun; //! remember objective function pt. //! local variables Double *x, *xsoln; Double *lobnd, *upbnd; Double objfLo = -INFINITY, objfUp = INFINITY, objfNLP, objfMIP; Double tol = 1E-2; Int feasibleNLP = 0, iterOA = 1, n; // ====================================================================== //! start the timer timer->start(); //! make sure solver is used correctly if (argc < 2) { usage(); return -1; } //! add AMPL options & flags to environment: flags (options without values) options = env->getOptions(); add_ampl_flags(options); env->readOptions(argc, argv); //! parse options if (!checkUserOK(options,env)) goto CLEANUP; //! check if user needs help //! read MINLP from AMPL & create Hessian/Jacobian for NLP solves iface = (MINOTAUR_AMPL::AMPLInterfacePtr) new MINOTAUR_AMPL::AMPLInterface(env); minlp = iface->readInstance(options->findString("problem_file")->getValue(),false); jPtr = (MINOTAUR_AMPL::JacobianPtr) new MINOTAUR_AMPL::Jacobian(iface); hPtr = (MINOTAUR_AMPL::HessianOfLagPtr) new MINOTAUR_AMPL::HessianOfLag(iface); minlp->setJacobian(jPtr); minlp->setHessian(hPtr); //! Display number of constraints and variables, and MINLP problem minlp->calculateSize(); n = minlp->getNumVars(); std::cout << "No. of vars, cons = " << minlp->getNumVars() << minlp->getNumCons() << std::endl; std::cout << std::endl << "The MINLP problem is: " << std::endl; minlp->write(std::cout); //! load the MINLP into the NLP solver (FilterSQP) e.load(minlp); //! get initial point & save original bounds x = new Double[n]; xsoln = new Double[n]; lobnd = new Double[n]; upbnd = new Double[n]; std::copy(iface->getInitialPoint(),iface->getInitialPoint()+n,x); for (VariableConstIterator i=minlp->varsBegin(); i!=minlp->varsEnd(); ++i) { v = *i; lobnd[v->getId()] = v->getLb(); upbnd[v->getId()] = v->getUb(); } //! initialize the MILP master problem by copying variables & linear c/s milp = (ProblemPtr) new Problem(); objFun = minlp->getObjective(); objVar = VariablePtr(); initMaster(minlp, milp, objVar, objFun, x); while ((objfLo <= objfUp)&&(iterOA<4)){ std::cout << "Iteration " << iterOA << std::endl << "===============" << std::endl << std::endl; //! set-up and solve NLP(y) with fixed integers solveNLP(minlp, e, x, objfNLP, feasibleNLP, n); std::cout << "Solved NLP " << iterOA << " objective = " << objfNLP << " NLPfeasible = " << feasibleNLP << std::endl; if (feasibleNLP && (objfNLP-tol < objfUp)) { objfUp = objfNLP - tol; std::copy(x,x+n,xsoln); } //! update MILP master problem by adding outer approximations updateMaster(minlp, milp, objVar, objFun, objfUp, x, n); //! solve MILP master problem solveMaster(env, milp, x, &objfMIP, n); objfLo = objfMIP; iterOA = iterOA + 1; } // end while (objfLo <= objfUp) //! output final result & timing std::cout << std::endl << "END outer-approximation: f(x) = " << objfUp << " time used = " << timer->query() << std::endl; CLEANUP: //! free storage delete timer; delete tFactory; if (minlp) { minlp->clear(); delete [] x; delete [] xsoln; delete [] lobnd; delete [] upbnd; } if (milp) { milp->clear(); } return 0; } // end outer approximation main