PropertySet MF::getProperties() const { PropertySet opts; opts.Set( "tol", props.tol ); opts.Set( "maxiter", props.maxiter ); opts.Set( "verbose", props.verbose ); opts.Set( "damping", props.damping ); return opts; }
PropertySet CBP::getProperties() const { PropertySet opts; opts.Set( "tol", props.tol ); opts.Set( "maxiter", props.maxiter ); opts.Set( "verbose", props.verbose ); opts.Set( "logdomain", props.logdomain ); opts.Set( "updates", props.updates ); opts.Set( "damping", props.damping ); opts.Set( "inference", props.inference ); return opts; }
void GI_libDAI::getMarginals(float* marginals, const int label) { // Set some constants Real tol = 1e-7; //Real tol = 1e-9; size_t verb = 0; //size_t verb = 3; size_t maxiter = 100; // Store the constants in a PropertySet object PropertySet opts; #if LIBDAI_24 opts.Set("maxiter",maxiter); // Maximum number of iterations opts.Set("tol",tol); // Tolerance for convergence opts.Set("verbose",verb); // Verbosity (amount of output generated) opts.Set("logdomain",false); opts.Set("inference",string("MAXPROD")); opts.Set("updates",string("SEQFIX")); #else opts.set("maxiter",maxiter); // Maximum number of iterations opts.set("tol",tol); // Tolerance for convergence opts.set("verbose",verb); // Verbosity (amount of output generated) opts.set("logdomain",false); opts.set("inference",string("MAXPROD")); opts.set("updates",string("SEQFIX")); #endif FactorGraph fg( factors.begin(), factors.end(), vars.begin(), vars.end(), factors.size(), vars.size() ); BP bp(fg, opts); bp.init(); bp.run(); for(long sid = 0; sid < slice->getNbSupernodes(); sid++) { Factor f = bp.belief(fg.var(sid)); marginals[sid] = f[label]; } }
PropertySet ExactInf::getProperties() const { PropertySet opts; opts.Set( "verbose", props.verbose ); return opts; }
/// Main function int main( int argc, char *argv[] ) { try { // Variables for storing command line arguments size_t seed; size_t states = 2; string type; size_t d, N, K, k, j, n1, n2, n3, prime; bool periodic = false; FactorType ft; LDPCType ldpc; Real beta, sigma_w, sigma_th, mean_w, mean_th, noise; // Declare the supported options. po::options_description opts("General command line options"); opts.add_options() ("help", "produce help message") ("seed", po::value<size_t>(&seed), "random number seed (tries to read from /dev/urandom if not specified)") ("states", po::value<size_t>(&states), "number of states of each variable (default=2 for binary variables)") ; // Graph structure options po::options_description opts_graph("Options for specifying graph structure"); opts_graph.add_options() ("type", po::value<string>(&type), "factor graph type (one of 'FULL', 'DREG', 'LOOP', 'TREE', 'GRID', 'GRID3D', 'HOI', 'LDPC')") ("d", po::value<size_t>(&d), "variable connectivity (only for type=='DREG');\n\t<d><N> should be even") ("N", po::value<size_t>(&N), "number of variables (not for type=='GRID','GRID3D')") ("n1", po::value<size_t>(&n1), "width of grid (only for type=='GRID','GRID3D')") ("n2", po::value<size_t>(&n2), "height of grid (only for type=='GRID','GRID3D')") ("n3", po::value<size_t>(&n3), "length of grid (only for type=='GRID3D')") ("periodic", po::value<bool>(&periodic), "periodic grid? (only for type=='GRID','GRID3D'; default=0)") ("K", po::value<size_t>(&K), "number of factors (only for type=='HOI','LDPC')") ("k", po::value<size_t>(&k), "number of variables per factor (only for type=='HOI','LDPC')") ; // Factor options po::options_description opts_factors("Options for specifying factors"); opts_factors.add_options() ("factors", po::value<FactorType>(&ft), "factor type (one of 'EXPGAUSS','POTTS','ISING')") ("beta", po::value<Real>(&beta), "inverse temperature (ignored for factors=='ISING')") ("mean_w", po::value<Real>(&mean_w), "mean of pairwise interactions w_{ij} (only for factors=='ISING')") ("mean_th", po::value<Real>(&mean_th), "mean of unary interactions th_i (only for factors=='ISING')") ("sigma_w", po::value<Real>(&sigma_w), "stddev of pairwise interactions w_{ij} (only for factors=='ISING')") ("sigma_th", po::value<Real>(&sigma_th), "stddev of unary interactions th_i (only for factors=='ISING'") ; // LDPC options po::options_description opts_ldpc("Options for specifying LDPC code factor graphs"); opts_ldpc.add_options() ("ldpc", po::value<LDPCType>(&ldpc), "type of LDPC code (one of 'SMALL','GROUP','RANDOM')") ("j", po::value<size_t>(&j), "number of parity checks per bit (only for type=='LDPC')") ("noise", po::value<Real>(&noise), "bitflip probability for binary symmetric channel (only for type=='LDPC')") ("prime", po::value<size_t>(&prime), "prime number for construction of LDPC code (only for type=='LDPC' with ldpc='GROUP'))") ; // All options opts.add(opts_graph).add(opts_factors).add(opts_ldpc); // Parse command line arguments po::variables_map vm; po::store(po::parse_command_line(argc, argv, opts), vm); po::notify(vm); // Display help message if necessary if( vm.count("help") || !vm.count("type") ) { cout << "This program is part of libDAI - http://www.libdai.org/" << endl << endl; cout << "Usage: ./createfg [options]" << endl << endl; cout << "Creates a factor graph according to the specified options." << endl << endl; cout << endl << opts << endl; cout << "The following factor graph types with pairwise interactions can be created:" << endl; cout << "\t'FULL': fully connected graph of <N> variables" << endl; cout << "\t'DREG': random regular graph of <N> variables where each variable is connected with <d> others" << endl; cout << "\t'LOOP': a single loop of <N> variables" << endl; cout << "\t'TREE': random tree-structured (acyclic, connected) graph of <N> variables" << endl; cout << "\t'GRID': 2D grid of <n1>x<n2> variables" << endl; cout << "\t'GRID3D': 3D grid of <n1>x<n2>x<n3> variables" << endl; cout << "The following higher-order interactions factor graphs can be created:" << endl; cout << "\t'HOI': random factor graph consisting of <N> variables and <K> factors," << endl; cout << "\t each factor being an interaction of <k> variables." << endl; cout << "The following LDPC code factor graphs can be created:" << endl; cout << "\t'LDPC': simulates LDPC decoding problem, using an LDPC code of <N> bits and <K>" << endl; cout << "\t parity checks, with <k> bits per check and <j> checks per bit, transmitted" << endl; cout << "\t on a binary symmetric channel with probability <noise> of flipping a bit." << endl; cout << "\t The transmitted codeword has all bits set to zero. The argument 'ldpc'" << endl; cout << "\t determines how the LDPC code is constructed: either using a group structure," << endl; cout << "\t or randomly, or a fixed small code with (N,K,k,j) = (4,4,3,3)." << endl << endl; cout << "For all types except type=='LDPC', the factors have to be specified as well." << endl << endl; cout << "EXPGAUSS factors (the default) are created by drawing all log-factor entries" << endl; cout << "independently from a Gaussian with mean 0 and standard deviation <beta>." << endl << endl; cout << "In case of pairwise interactions, one can also choose POTTS factors, for which" << endl; cout << "the log-factors are simply delta functions multiplied by the strength <beta>." << endl << endl; cout << "For pairwise interactions and binary variables, one can also use ISING factors." << endl; cout << "Here variables x1...xN are assumed to be +1/-1--valued, and unary interactions" << endl; cout << "are of the form exp(th*xi) with th drawn from a Gaussian distribution with mean" << endl; cout << "<mean_th> and standard deviation <sigma_th>, and pairwise interactions are of the" << endl; cout << "form exp(w*xi*xj) with w drawn from a Gaussian distribution with mean <mean_w>" << endl; cout << "and standard deviation <sigma_w>." << endl; return 1; } // Set default number of states if( !vm.count("states") ) states = 2; // Set default factor type if( !vm.count("factors") ) ft = FactorType::EXPGAUSS; // Check validness of factor type if( ft == FactorType::POTTS ) if( type == HOI_TYPE ) throw "For factors=='POTTS', interactions should be pairwise (type!='HOI')"; if( ft == FactorType::ISING ) if( ((states != 2) || (type == HOI_TYPE)) ) throw "For factors=='ISING', variables should be binary (states==2) and interactions should be pairwise (type!='HOI')"; // Read random seed if( !vm.count("seed") ) { ifstream infile; bool success; infile.open( "/dev/urandom" ); success = infile.is_open(); if( success ) { infile.read( (char *)&seed, sizeof(size_t) / sizeof(char) ); success = infile.good(); infile.close(); } if( !success ) throw "Please specify random number seed."; } rnd_seed( seed ); // Set default periodicity if( !vm.count("periodic") ) periodic = false; // Store some options in a PropertySet object PropertySet options; if( vm.count("mean_th") ) options.Set("mean_th", mean_th); if( vm.count("sigma_th") ) options.Set("sigma_th", sigma_th); if( vm.count("mean_w") ) options.Set("mean_w", mean_w); if( vm.count("sigma_w") ) options.Set("sigma_w", sigma_w); if( vm.count("beta") ) options.Set("beta", beta); // Output some comments cout << "# Factor graph made by " << argv[0] << endl; cout << "# type = " << type << endl; cout << "# states = " << states << endl; // The factor graph to be constructed FactorGraph fg; #define NEED_ARG(name, desc) do { if(!vm.count(name)) throw "Please specify " desc " with --" name; } while(0); if( type == FULL_TYPE || type == DREG_TYPE || type == LOOP_TYPE || type == TREE_TYPE || type == GRID_TYPE || type == GRID3D_TYPE ) { // Pairwise interactions // Check command line options if( type == GRID_TYPE ) { NEED_ARG("n1", "width of grid"); NEED_ARG("n2", "height of grid"); N = n1 * n2; } else if( type == GRID3D_TYPE ) { NEED_ARG("n1", "width of grid"); NEED_ARG("n2", "height of grid"); NEED_ARG("n3", "depth of grid"); N = n1 * n2 * n3; } else NEED_ARG("N", "number of variables"); if( states > 2 || ft == FactorType::POTTS ) { NEED_ARG("beta", "stddev of log-factor entries"); } else { NEED_ARG("mean_w", "mean of pairwise interactions"); NEED_ARG("mean_th", "mean of unary interactions"); NEED_ARG("sigma_w", "stddev of pairwise interactions"); NEED_ARG("sigma_th", "stddev of unary interactions"); } if( type == DREG_TYPE ) NEED_ARG("d", "connectivity (number of neighboring variables of each variable)"); // Build pairwise interaction graph GraphAL G; if( type == FULL_TYPE ) G = createGraphFull( N ); else if( type == DREG_TYPE ) G = createGraphRegular( N, d ); else if( type == LOOP_TYPE ) G = createGraphLoop( N ); else if( type == TREE_TYPE ) G = createGraphTree( N ); else if( type == GRID_TYPE ) G = createGraphGrid( n1, n2, periodic ); else if( type == GRID3D_TYPE ) G = createGraphGrid3D( n1, n2, n3, periodic ); // Construct factor graph from pairwise interaction graph fg = createFG( G, ft, states, options ); // Output some additional comments if( type == GRID_TYPE || type == GRID3D_TYPE ) { cout << "# n1 = " << n1 << endl; cout << "# n2 = " << n2 << endl; if( type == GRID3D_TYPE ) cout << "# n3 = " << n3 << endl; } if( type == DREG_TYPE ) cout << "# d = " << d << endl; cout << "# options = " << options << endl; } else if( type == HOI_TYPE ) { // Higher order interactions // Check command line arguments NEED_ARG("N", "number of variables"); NEED_ARG("K", "number of factors"); NEED_ARG("k", "number of variables per factor"); NEED_ARG("beta", "stddev of log-factor entries"); // Create higher-order interactions factor graph do { fg = createHOIFG( N, K, k, beta ); } while( !fg.isConnected() ); // Output some additional comments cout << "# K = " << K << endl; cout << "# k = " << k << endl; cout << "# beta = " << beta << endl; } else if( type == LDPC_TYPE ) { // LDPC codes // Check command line arguments NEED_ARG("ldpc", "type of LDPC code"); NEED_ARG("noise", "bitflip probability for binary symmetric channel"); // Check more command line arguments (seperately for each LDPC type) if( ldpc == LDPCType::RANDOM ) { NEED_ARG("N", "number of variables"); NEED_ARG("K", "number of factors"); NEED_ARG("k", "number of variables per factor"); NEED_ARG("j", "number of parity checks per bit"); if( N * j != K * k ) throw "Parameters should satisfy N * j == K * k"; } else if( ldpc == LDPCType::GROUP ) { NEED_ARG("prime", "prime number"); NEED_ARG("k", "number of variables per factor"); NEED_ARG("j", "number of parity checks per bit"); if( !isPrime(prime) ) throw "Parameter <prime> should be prime"; if( !((prime-1) % j == 0 ) ) throw "Parameters should satisfy (prime-1) % j == 0"; if( !((prime-1) % k == 0 ) ) throw "Parameters should satisfy (prime-1) % k == 0"; N = prime * k; K = prime * j; } else if( ldpc == LDPCType::SMALL ) { N = 4; K = 4; j = 3; k = 3; } // Output some additional comments cout << "# N = " << N << endl; cout << "# K = " << K << endl; cout << "# j = " << j << endl; cout << "# k = " << k << endl; if( ldpc == LDPCType::GROUP ) cout << "# prime = " << prime << endl; cout << "# noise = " << noise << endl; // Construct likelihood and paritycheck factors Real likelihood[4] = {1.0 - noise, noise, noise, 1.0 - noise}; Real *paritycheck = new Real[1 << k]; createParityCheck(paritycheck, k, 0.0); // Create LDPC structure BipartiteGraph ldpcG; bool regular; do { if( ldpc == LDPCType::GROUP ) ldpcG = createGroupStructuredLDPCGraph( prime, j, k ); else if( ldpc == LDPCType::RANDOM ) ldpcG = createRandomBipartiteGraph( N, K, j, k ); else if( ldpc == LDPCType::SMALL ) ldpcG = createSmallLDPCGraph(); regular = true; for( size_t i = 0; i < N; i++ ) if( ldpcG.nb1(i).size() != j ) regular = false; for( size_t I = 0; I < K; I++ ) if( ldpcG.nb2(I).size() != k ) regular = false; } while( !regular && !ldpcG.isConnected() ); // Convert to FactorGraph vector<Factor> factors; for( size_t I = 0; I < K; I++ ) { VarSet vs; for( size_t _i = 0; _i < k; _i++ ) { size_t i = ldpcG.nb2(I)[_i]; vs |= Var( i, 2 ); } factors.push_back( Factor( vs, paritycheck ) ); } delete paritycheck; // Generate noise vector vector<char> noisebits(N,0); size_t bitflips = 0; for( size_t i = 0; i < N; i++ ) { if( rnd_uniform() < noise ) { noisebits[i] = 1; bitflips++; } } cout << "# bitflips = " << bitflips << endl; // Simulate transmission of all-zero codeword vector<char> input(N,0); vector<char> output(N,0); for( size_t i = 0; i < N; i++ ) output[i] = (input[i] + noisebits[i]) & 1; // Add likelihoods for( size_t i = 0; i < N; i++ ) factors.push_back( Factor(Var(i,2), likelihood + output[i]*2) ); // Construct Factor Graph fg = FactorGraph( factors ); } else throw "Invalid type"; // Output additional comments cout << "# N = " << fg.nrVars() << endl; cout << "# seed = " << seed << endl; // Output factor graph cout << fg; } catch( const char *e ) { /// Display error message cerr << "Error: " << e << endl; return 1; } return 0; }
/** * Run BP on a given factor graph * @param nodeLabelsBP node inferred by BP */ double GI_libDAI::run(labelType* inferredLabels, int id, size_t maxiter, labelType* nodeLabelsGroundTruth, bool computeEnergyAtEachIteration, double* _loss) { double energy = 0; double loss = 0; string paramMSRC; Config::Instance()->getParameter("msrc", paramMSRC); bool useMSRC = paramMSRC.c_str()[0] == '1'; bool replaceVoidMSRC = false; if(useMSRC) { Config::Instance()->getParameter("msrc_replace_void", paramMSRC); replaceVoidMSRC = paramMSRC.c_str()[0] == '1'; } // Set some constants Real tol = 1e-7; //Real tol = 1e-9; size_t verb = 0; //size_t verb = 3; // Store the constants in a PropertySet object PropertySet opts; #if LIBDAI_24 opts.Set("maxiter",maxiter); // Maximum number of iterations opts.Set("tol",tol); // Tolerance for convergence opts.Set("verbose",verb); // Verbosity (amount of output generated) opts.Set("logdomain",false); opts.Set("inference",string("MAXPROD")); opts.Set("updates",string("SEQFIX")); #else opts.set("maxiter",maxiter); // Maximum number of iterations opts.set("tol",tol); // Tolerance for convergence opts.set("verbose",verb); // Verbosity (amount of output generated) opts.set("logdomain",false); opts.set("inference",string("MAXPROD")); opts.set("updates",string("SEQFIX")); #endif FactorGraph fg( factors.begin(), factors.end(), vars.begin(), vars.end(), factors.size(), vars.size() ); // Construct a BP (belief propagation) object from the FactorGraph fg // using the parameters specified by opts and two additional properties, // specifying the type of updates the BP algorithm should perform and // whether they should be done in the real or in the logdomain //BP bp(fg, opts("updates",string("SEQFIX"))("logdomain",true)); //BP bp(fg, opts("updates",string("SEQFIX"))("logdomain",false)); //BP bp(fg, opts("updates",string("SEQFIX"))("logdomain",false)("inference",string("MAXPROD"))); BP bp(fg, opts); // Initialize belief propagation algorithm bp.init(); vector<std::size_t> labels; // Run belief propagation algorithm if(computeEnergyAtEachIteration) { #if OUTPUT_ENERGY // one file per example stringstream sEnergyMaxFile; sEnergyMaxFile << "x_" << id; sEnergyMaxFile << "_energyBPMax.txt"; ofstream ofsEnergyMax(sEnergyMaxFile.str().c_str(),ios::app); #endif int i = maxiter; //for(int i = 1; i <= (int)maxiter; i+=10) // loop to see how energy evolves { //INFERENCE_PRINT("[gi_libDAI] BP Iteration %d\n", i); #if LIBDAI_24 opts.Set("maxiter",(size_t)i); // Maximum number of iterations #else opts.set("maxiter",(size_t)i); // Maximum number of iterations #endif bp.setProperties(opts); //Real maxDiff = bp.run(); bp.run(); labels = bp.findMaximum(); if(replaceVoidMSRC) { if(lossPerLabel == 0) { copyLabels_MSRC(labels, inferredLabels, bp, fg); } else { copy(labels.begin(),labels.end(),inferredLabels); } } else { copy(labels.begin(),labels.end(),inferredLabels); } energy = GraphInference::computeEnergy(inferredLabels); #if OUTPUT_ENERGY ofsEnergyMax << energy << " " << loss << endl; #endif //if( maxDiff < tol ) // break; } #if OUTPUT_ENERGY ofsEnergyMax.close(); #endif } else { bp.run(); labels = bp.findMaximum(); if(replaceVoidMSRC) { if(lossPerLabel == 0) { copyLabels_MSRC(labels, inferredLabels, bp, fg); } else { copy(labels.begin(),labels.end(),inferredLabels); } } else { copy(labels.begin(),labels.end(),inferredLabels); } energy = GraphInference::computeEnergy(inferredLabels); } if(_loss) { *_loss = loss; } return energy; }