void testBoundsMesh( const Gu::InternalTriangleMeshData& meshData, const PxTransform& world2Shape, const PxTransform& s2w, const Cm::FastVertex2ShapeScaling& meshScaling, bool idtScaleMesh, const PxBounds3& worldBounds, PxcContactCellMeshCallback& callback) { // Find colliding triangles. // Setup an OBB for the fluid particle cell (in local space of shape) // assuming uniform scaling in most cases, using the pose as box rotation // if scaling is non-uniform, the bounding box is conservative PxBounds3 boundsInMesh; PX_ASSERT(!worldBounds.isEmpty()); boundsInMesh = PxBounds3::transformFast(world2Shape, worldBounds); Gu::Box vertexSpaceOBB(boundsInMesh.getCenter(), boundsInMesh.getExtents(), PxMat33(PxIdentity)); if(!idtScaleMesh) meshScaling.transformQueryBounds(vertexSpaceOBB.center, vertexSpaceOBB.extents); // Set collider flags (has to be done each time again!) Gu::RTreeMidphaseData hmd; meshData.mCollisionModel.getRTreeMidphaseData(hmd); MPT_SET_CONTEXT("flui", s2w, meshScaling); PX_UNUSED(s2w); Gu::MeshRayCollider::collideOBB(vertexSpaceOBB, true, hmd, callback); }
PxBounds3 Sc::ClothCore::getWorldBounds() const { const PxVec3& center = reinterpret_cast<const PxVec3&>(mLowLevelCloth->getBoundingBoxCenter()); const PxVec3& extent = reinterpret_cast<const PxVec3&>(mLowLevelCloth->getBoundingBoxScale()); PxBounds3 localBounds = PxBounds3::centerExtents(center, extent); PX_ASSERT(!localBounds.isEmpty()); return PxBounds3::transformFast(getGlobalPose(), localBounds); }
void physx::Pt::collideWithStaticHeightField(ParticleCollData* particleCollData, PxU32 numCollData, const GeometryUnion& heightFieldShape, PxReal proxRadius, const PxTransform& shape2World) { PX_ASSERT(particleCollData); const PxHeightFieldGeometryLL& hfGeom = heightFieldShape.get<const PxHeightFieldGeometryLL>(); const HeightFieldUtil hfUtil(hfGeom); for(PxU32 p = 0; p < numCollData; p++) { ParticleCollData& collData = particleCollData[p]; PxBounds3 particleBounds = PxBounds3::boundsOfPoints(collData.localOldPos, collData.localNewPos); PX_ASSERT(!particleBounds.isEmpty()); particleBounds.fattenFast(proxRadius); HeightFieldAabbTest test(particleBounds, hfUtil); HeightFieldAabbTest::Iterator itBegin = test.begin(); HeightFieldAabbTest::Iterator itEnd = test.end(); PxVec3 triangle[3]; collData.localDcNum = 0.0f; collData.localSurfaceNormal = PxVec3(0); collData.localSurfacePos = PxVec3(0); bool hasCC = (collData.localFlags & ParticleCollisionFlags::CC) > 0; PxVec3 tmpSurfaceNormal(0.0f); PxVec3 tmpSurfacePos(0.0f); PxVec3 tmpProxSurfaceNormal(0.0f); PxVec3 tmpProxSurfacePos(0.0f); PxReal tmpCCTime(collData.ccTime); PxReal tmpDistOldToSurface(0.0f); for(HeightFieldAabbTest::Iterator it = itBegin; it != itEnd; ++it) { it.getTriangleVertices(triangle); const PxVec3& origin = triangle[0]; PxVec3 e0, e1; e0 = triangle[1] - origin; e1 = triangle[2] - origin; PxU32 tmpFlags = collideWithMeshTriangle(tmpSurfaceNormal, tmpSurfacePos, tmpProxSurfaceNormal, tmpProxSurfacePos, tmpCCTime, tmpDistOldToSurface, collData.localOldPos, collData.localNewPos, origin, e0, e1, hasCC, collData.restOffset, proxRadius); updateCollShapeData(collData, hasCC, tmpFlags, tmpCCTime, tmpDistOldToSurface, tmpSurfaceNormal, tmpSurfacePos, tmpProxSurfaceNormal, tmpProxSurfacePos, shape2World); } } }
/** input scaledPlaneBuf needs a capacity of the number of planes in convexShape */ void physx::collideWithConvex(PxPlane* scaledPlaneBuf, PxsParticleCollData* particleCollData, PxU32 numCollData, const Gu::GeometryUnion& convexShape, const PxReal proxRadius) { PX_ASSERT(scaledPlaneBuf); PX_ASSERT(particleCollData); const PxConvexMeshGeometryLL& convexShapeData = convexShape.get<const PxConvexMeshGeometryLL>(); const Gu::ConvexHullData* convexHullData = convexShapeData.hullData; PX_ASSERT(convexHullData); // convex bounds in local space PxMat33 scaling = convexShapeData.scale.toMat33(), invScaling; invScaling = scaling.getInverse(); PX_ASSERT(!convexHullData->mAABB.isEmpty()); PxBounds3 shapeBounds = PxBounds3::transformFast(scaling, convexHullData->mAABB); PX_ASSERT(!shapeBounds.isEmpty()); shapeBounds.fattenFast(proxRadius); bool scaledPlanes = false; #if PXS_FLUID_USE_SIMD_CONVEX_COLLISION const Vec3V boundMin = V3LoadU(shapeBounds.minimum); const Vec3V boundMax = V3LoadU(shapeBounds.maximum); const Vec4V boundMinX = V4SplatElement<0>(Vec4V_From_Vec3V(boundMin)); const Vec4V boundMinY = V4SplatElement<1>(Vec4V_From_Vec3V(boundMin)); const Vec4V boundMinZ = V4SplatElement<2>(Vec4V_From_Vec3V(boundMin)); const Vec4V boundMaxX = V4SplatElement<0>(Vec4V_From_Vec3V(boundMax)); const Vec4V boundMaxY = V4SplatElement<1>(Vec4V_From_Vec3V(boundMax)); const Vec4V boundMaxZ = V4SplatElement<2>(Vec4V_From_Vec3V(boundMax)); PxsParticleCollDataV4 collDataV4; const VecU32V u4Zero = VecU32VLoadXYZW(0,0,0,0); const VecU32V u4One = VecU32VLoadXYZW(1,1,1,1); PX_ALIGN(16, PxsParticleCollData fakeCsd); fakeCsd.localOldPos = PxVec3(FLT_MAX, FLT_MAX, FLT_MAX); fakeCsd.localNewPos = PxVec3(FLT_MAX, FLT_MAX, FLT_MAX); PX_ALIGN(16, PxU32 overlapArray[128]); PxU32 start = 0; while(start < numCollData) { const PxU32 batchSize = PxMin(numCollData-start, (PxU32)128); PxU32 v4Count = 0; PxsParticleCollData* particleCollDataIt = &particleCollData[start]; for(PxU32 i=0; i<batchSize; i+=4) { PxsParticleCollData* collData[4]; collData[0] = particleCollDataIt++; collData[1] = (i+1 < numCollData) ? particleCollDataIt++ : &fakeCsd; collData[2] = (i+2 < numCollData) ? particleCollDataIt++ : &fakeCsd; collData[3] = (i+3 < numCollData) ? particleCollDataIt++ : &fakeCsd; Vec4V oldPosV0 = V4LoadU((PxF32*)&collData[0]->localOldPos); Vec4V newPosV0 = V4LoadU((PxF32*)&collData[0]->localNewPos); Vec4V oldPosV1 = V4LoadU((PxF32*)&collData[1]->localOldPos); Vec4V newPosV1 = V4LoadU((PxF32*)&collData[1]->localNewPos); Vec4V oldPosV2 = V4LoadU((PxF32*)&collData[2]->localOldPos); Vec4V newPosV2 = V4LoadU((PxF32*)&collData[2]->localNewPos); Vec4V oldPosV3 = V4LoadU((PxF32*)&collData[3]->localOldPos); Vec4V newPosV3 = V4LoadU((PxF32*)&collData[3]->localNewPos); Vec4V particleMin0 = V4Min(oldPosV0, newPosV0); Vec4V particleMax0 = V4Max(oldPosV0, newPosV0); Vec4V particleMin1 = V4Min(oldPosV1, newPosV1); Vec4V particleMax1 = V4Max(oldPosV1, newPosV1); Vec4V particleMin2 = V4Min(oldPosV2, newPosV2); Vec4V particleMax2 = V4Max(oldPosV2, newPosV2); Vec4V particleMin3 = V4Min(oldPosV3, newPosV3); Vec4V particleMax3 = V4Max(oldPosV3, newPosV3); Mat44V particleMin44(particleMin0, particleMin1, particleMin2, particleMin3); const Mat44V particleMinTrans44 = M44Trnsps(particleMin44); Mat44V particleMax44(particleMax0, particleMax1, particleMax2, particleMax3); const Mat44V particleMaxTrans44 = M44Trnsps(particleMax44); BoolV mask = V4IsGrtr(boundMaxX, particleMinTrans44.col0); mask = BAnd(V4IsGrtr(boundMaxY, particleMinTrans44.col1), mask); mask = BAnd(V4IsGrtr(boundMaxZ, particleMinTrans44.col2), mask); mask = BAnd(V4IsGrtr(particleMaxTrans44.col0, boundMinX), mask); mask = BAnd(V4IsGrtr(particleMaxTrans44.col1, boundMinY), mask); mask = BAnd(V4IsGrtr(particleMaxTrans44.col2, boundMinZ), mask); VecU32V overlap4 = V4U32Sel(mask, u4One, u4Zero); V4U32StoreAligned(overlap4,(VecU32V*)&overlapArray[i]); } particleCollDataIt = &particleCollData[start]; for(PxU32 k=0; k<batchSize; k++, ++particleCollDataIt) { if (overlapArray[k]) { if(!scaledPlanes) { scalePlanes(scaledPlaneBuf, convexHullData, invScaling); scaledPlanes = true; } collDataV4.localOldPos[v4Count].v3 = particleCollDataIt->localOldPos; collDataV4.localNewPos[v4Count].v3 = particleCollDataIt->localNewPos; collDataV4.localFlags[v4Count] = particleCollDataIt->localFlags; collDataV4.restOffset[v4Count] = particleCollDataIt->restOffset; collDataV4.ccTime[v4Count] = particleCollDataIt->ccTime; collDataV4.collData[v4Count] = particleCollDataIt; v4Count++; } if(v4Count == 4 || (v4Count > 0 && (k == batchSize-1))) { collideWithConvexPlanesSIMD(collDataV4, scaledPlaneBuf, convexHullData->mNbPolygons, proxRadius); for(PxU32 j =0 ; j < v4Count; j++) { PxsParticleCollData* collData = collDataV4.collData[j]; PxU32 stateFlag = collDataV4.localFlags[j]; if(stateFlag) { collData->localFlags |= stateFlag; collData->ccTime = collDataV4.ccTime[j]; collData->localSurfaceNormal = collDataV4.localSurfaceNormal[j].v3; collData->localSurfacePos = collDataV4.localSurfacePos[j].v3; } } v4Count = 0; } } start += batchSize; } #else PxsParticleCollData* particleCollDataIt = particleCollData; for(PxU32 i=0; i<numCollData; ++i, ++particleCollDataIt) { PxBounds3 particleBounds = PxBounds3::boundsOfPoints(particleCollDataIt->localOldPos, particleCollDataIt->localNewPos); if (particleBounds.intersects(shapeBounds)) { if(!scaledPlanes) { scalePlanes(scaledPlaneBuf, convexHullData, invScaling); scaledPlanes = true; } collideWithConvexPlanes(*particleCollDataIt, scaledPlaneBuf, convexHullData->mNbPolygons, proxRadius); } } #endif }