/// \brief Build a pointer type. /// /// \param T The type to which we'll be building a pointer. /// /// \param Quals The cvr-qualifiers to be applied to the pointer type. /// /// \param Loc The location of the entity whose type involves this /// pointer type or, if there is no such entity, the location of the /// type that will have pointer type. /// /// \param Entity The name of the entity that involves the pointer /// type, if known. /// /// \returns A suitable pointer type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildPointerType(QualType T, unsigned Quals, SourceLocation Loc, DeclarationName Entity) { if (T->isReferenceType()) { // C++ 8.3.2p4: There shall be no ... pointers to references ... Diag(Loc, diag::err_illegal_decl_pointer_to_reference) << getPrintableNameForEntity(Entity); return QualType(); } // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) { Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; Quals &= ~QualType::Restrict; } // Build the pointer type. return Context.getPointerType(T).getQualifiedType(Quals); }
/// GetTypeForDeclarator - Convert the type for the specified /// declarator to Type instances. Skip the outermost Skip type /// objects. QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) { bool OmittedReturnType = false; if (D.getContext() == Declarator::BlockLiteralContext && Skip == 0 && !D.getDeclSpec().hasTypeSpecifier() && (D.getNumTypeObjects() == 0 || (D.getNumTypeObjects() == 1 && D.getTypeObject(0).Kind == DeclaratorChunk::Function))) OmittedReturnType = true; // long long is a C99 feature. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong) Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong); // Determine the type of the declarator. Not all forms of declarator // have a type. QualType T; switch (D.getKind()) { case Declarator::DK_Abstract: case Declarator::DK_Normal: case Declarator::DK_Operator: { const DeclSpec& DS = D.getDeclSpec(); if (OmittedReturnType) // We default to a dependent type initially. Can be modified by // the first return statement. T = Context.DependentTy; else { T = ConvertDeclSpecToType(DS); if (T.isNull()) return T; } break; } case Declarator::DK_Constructor: case Declarator::DK_Destructor: case Declarator::DK_Conversion: // Constructors and destructors don't have return types. Use // "void" instead. Conversion operators will check their return // types separately. T = Context.VoidTy; break; } // The name we're declaring, if any. DeclarationName Name; if (D.getIdentifier()) Name = D.getIdentifier(); // Walk the DeclTypeInfo, building the recursive type as we go. // DeclTypeInfos are ordered from the identifier out, which is // opposite of what we want :). for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip); switch (DeclType.Kind) { default: assert(0 && "Unknown decltype!"); case DeclaratorChunk::BlockPointer: // If blocks are disabled, emit an error. if (!LangOpts.Blocks) Diag(DeclType.Loc, diag::err_blocks_disable); if (DeclType.Cls.TypeQuals) Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type); if (!T.getTypePtr()->isFunctionType()) Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type); else T = Context.getBlockPointerType(T); break; case DeclaratorChunk::Pointer: T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name); break; case DeclaratorChunk::Reference: T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Ref.HasRestrict ? QualType::Restrict : 0, DeclType.Loc, Name); break; case DeclaratorChunk::Array: { DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); ArrayType::ArraySizeModifier ASM; if (ATI.isStar) ASM = ArrayType::Star; else if (ATI.hasStatic) ASM = ArrayType::Static; else ASM = ArrayType::Normal; T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name); break; } case DeclaratorChunk::Function: { // If the function declarator has a prototype (i.e. it is not () and // does not have a K&R-style identifier list), then the arguments are part // of the type, otherwise the argument list is (). const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; // C99 6.7.5.3p1: The return type may not be a function or array type. if (T->isArrayType() || T->isFunctionType()) { Diag(DeclType.Loc, diag::err_func_returning_array_function) << T; T = Context.IntTy; D.setInvalidType(true); } if (FTI.NumArgs == 0) { if (getLangOptions().CPlusPlus) { // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the // function takes no arguments. T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals); } else if (FTI.isVariadic) { // We allow a zero-parameter variadic function in C if the // function is marked with the "overloadable" // attribute. Scan for this attribute now. bool Overloadable = false; for (const AttributeList *Attrs = D.getAttributes(); Attrs; Attrs = Attrs->getNext()) { if (Attrs->getKind() == AttributeList::AT_overloadable) { Overloadable = true; break; } } if (!Overloadable) Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg); T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0); } else { // Simple void foo(), where the incoming T is the result type. T = Context.getFunctionNoProtoType(T); } } else if (FTI.ArgInfo[0].Param == 0) { // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition. Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration); } else { // Otherwise, we have a function with an argument list that is // potentially variadic. llvm::SmallVector<QualType, 16> ArgTys; for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>()); QualType ArgTy = Param->getType(); assert(!ArgTy.isNull() && "Couldn't parse type?"); // Adjust the parameter type. assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?"); // Look for 'void'. void is allowed only as a single argument to a // function with no other parameters (C99 6.7.5.3p10). We record // int(void) as a FunctionProtoType with an empty argument list. if (ArgTy->isVoidType()) { // If this is something like 'float(int, void)', reject it. 'void' // is an incomplete type (C99 6.2.5p19) and function decls cannot // have arguments of incomplete type. if (FTI.NumArgs != 1 || FTI.isVariadic) { Diag(DeclType.Loc, diag::err_void_only_param); ArgTy = Context.IntTy; Param->setType(ArgTy); } else if (FTI.ArgInfo[i].Ident) { // Reject, but continue to parse 'int(void abc)'. Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_with_void_type); ArgTy = Context.IntTy; Param->setType(ArgTy); } else { // Reject, but continue to parse 'float(const void)'. if (ArgTy.getCVRQualifiers()) Diag(DeclType.Loc, diag::err_void_param_qualified); // Do not add 'void' to the ArgTys list. break; } } else if (!FTI.hasPrototype) { if (ArgTy->isPromotableIntegerType()) { ArgTy = Context.IntTy; } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) { if (BTy->getKind() == BuiltinType::Float) ArgTy = Context.DoubleTy; } } ArgTys.push_back(ArgTy); } T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(), FTI.isVariadic, FTI.TypeQuals); } break; } case DeclaratorChunk::MemberPointer: // The scope spec must refer to a class, or be dependent. DeclContext *DC = computeDeclContext(DeclType.Mem.Scope()); QualType ClsType; // FIXME: Extend for dependent types when it's actually supported. // See ActOnCXXNestedNameSpecifier. if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) { ClsType = Context.getTagDeclType(RD); } else { if (DC) { Diag(DeclType.Mem.Scope().getBeginLoc(), diag::err_illegal_decl_mempointer_in_nonclass) << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") << DeclType.Mem.Scope().getRange(); } D.setInvalidType(true); ClsType = Context.IntTy; } // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member // with reference type, or "cv void." if (T->isReferenceType()) { Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference) << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name"); D.setInvalidType(true); T = Context.IntTy; } if (T->isVoidType()) { Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void) << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name"); T = Context.IntTy; } // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if ((DeclType.Mem.TypeQuals & QualType::Restrict) && !T->isIncompleteOrObjectType()) { Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; DeclType.Mem.TypeQuals &= ~QualType::Restrict; } T = Context.getMemberPointerType(T, ClsType.getTypePtr()). getQualifiedType(DeclType.Mem.TypeQuals); break; } if (T.isNull()) { D.setInvalidType(true); T = Context.IntTy; } // See if there are any attributes on this declarator chunk. if (const AttributeList *AL = DeclType.getAttrs()) ProcessTypeAttributeList(T, AL); } if (getLangOptions().CPlusPlus && T->isFunctionType()) { const FunctionProtoType *FnTy = T->getAsFunctionProtoType(); assert(FnTy && "Why oh why is there not a FunctionProtoType here ?"); // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type // for a nonstatic member function, the function type to which a pointer // to member refers, or the top-level function type of a function typedef // declaration. if (FnTy->getTypeQuals() != 0 && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && ((D.getContext() != Declarator::MemberContext && (!D.getCXXScopeSpec().isSet() || !computeDeclContext(D.getCXXScopeSpec())->isRecord())) || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) { if (D.isFunctionDeclarator()) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type); else Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_typedef_function_type_use); // Strip the cv-quals from the type. T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(), FnTy->getNumArgs(), FnTy->isVariadic(), 0); } } // If there were any type attributes applied to the decl itself (not the // type, apply the type attribute to the type!) if (const AttributeList *Attrs = D.getAttributes()) ProcessTypeAttributeList(T, Attrs); return T; }
/// \brief Convert the specified declspec to the appropriate type /// object. /// \param DS the declaration specifiers /// \returns The type described by the declaration specifiers, or NULL /// if there was an error. QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) { // FIXME: Should move the logic from DeclSpec::Finish to here for validity // checking. QualType Result; switch (DS.getTypeSpecType()) { case DeclSpec::TST_void: Result = Context.VoidTy; break; case DeclSpec::TST_char: if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified) Result = Context.CharTy; else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) Result = Context.SignedCharTy; else { assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"); Result = Context.UnsignedCharTy; } break; case DeclSpec::TST_wchar: if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified) Result = Context.WCharTy; else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) { Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec) << DS.getSpecifierName(DS.getTypeSpecType()); Result = Context.getSignedWCharType(); } else { assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"); Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec) << DS.getSpecifierName(DS.getTypeSpecType()); Result = Context.getUnsignedWCharType(); } break; case DeclSpec::TST_unspecified: // "<proto1,proto2>" is an objc qualified ID with a missing id. if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) { Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers()); break; } // Unspecified typespec defaults to int in C90. However, the C90 grammar // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, // type-qualifier, or storage-class-specifier. If not, emit an extwarn. // Note that the one exception to this is function definitions, which are // allowed to be completely missing a declspec. This is handled in the // parser already though by it pretending to have seen an 'int' in this // case. if (getLangOptions().ImplicitInt) { // In C89 mode, we only warn if there is a completely missing declspec // when one is not allowed. if (DS.isEmpty()) Diag(DS.getSourceRange().getBegin(), diag::warn_missing_declspec) << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(), "int"); } else if (!DS.hasTypeSpecifier()) { // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: // "At least one type specifier shall be given in the declaration // specifiers in each declaration, and in the specifier-qualifier list in // each struct declaration and type name." // FIXME: Does Microsoft really have the implicit int extension in C++? unsigned DK = getLangOptions().CPlusPlus && !getLangOptions().Microsoft? diag::err_missing_type_specifier : diag::warn_missing_type_specifier; Diag(DS.getSourceRange().getBegin(), DK); // FIXME: If we could guarantee that the result would be // well-formed, it would be useful to have a code insertion hint // here. However, after emitting this warning/error, we often // emit other errors. } // FALL THROUGH. case DeclSpec::TST_int: { if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) { switch (DS.getTypeSpecWidth()) { case DeclSpec::TSW_unspecified: Result = Context.IntTy; break; case DeclSpec::TSW_short: Result = Context.ShortTy; break; case DeclSpec::TSW_long: Result = Context.LongTy; break; case DeclSpec::TSW_longlong: Result = Context.LongLongTy; break; } } else { switch (DS.getTypeSpecWidth()) { case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break; case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break; case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break; case DeclSpec::TSW_longlong: Result =Context.UnsignedLongLongTy; break; } } break; } case DeclSpec::TST_float: Result = Context.FloatTy; break; case DeclSpec::TST_double: if (DS.getTypeSpecWidth() == DeclSpec::TSW_long) Result = Context.LongDoubleTy; else Result = Context.DoubleTy; break; case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool case DeclSpec::TST_decimal32: // _Decimal32 case DeclSpec::TST_decimal64: // _Decimal64 case DeclSpec::TST_decimal128: // _Decimal128 assert(0 && "FIXME: GNU decimal extensions not supported yet!"); case DeclSpec::TST_class: case DeclSpec::TST_enum: case DeclSpec::TST_union: case DeclSpec::TST_struct: { Decl *D = static_cast<Decl *>(DS.getTypeRep()); assert(D && "Didn't get a decl for a class/enum/union/struct?"); assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"); // TypeQuals handled by caller. Result = Context.getTypeDeclType(cast<TypeDecl>(D)); break; } case DeclSpec::TST_typename: { assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"); Result = QualType::getFromOpaquePtr(DS.getTypeRep()); if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) { // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so // we have this "hack" for now... if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType()) Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(), (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers()); else if (Result == Context.getObjCIdType()) // id<protocol-list> Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers()); else if (Result == Context.getObjCClassType()) // Class<protocol-list> Diag(DS.getSourceRange().getBegin(), diag::err_qualified_class_unsupported) << DS.getSourceRange(); else Diag(DS.getSourceRange().getBegin(), diag::err_invalid_protocol_qualifiers) << DS.getSourceRange(); } // TypeQuals handled by caller. break; } case DeclSpec::TST_typeofType: Result = QualType::getFromOpaquePtr(DS.getTypeRep()); assert(!Result.isNull() && "Didn't get a type for typeof?"); // TypeQuals handled by caller. Result = Context.getTypeOfType(Result); break; case DeclSpec::TST_typeofExpr: { Expr *E = static_cast<Expr *>(DS.getTypeRep()); assert(E && "Didn't get an expression for typeof?"); // TypeQuals handled by caller. Result = Context.getTypeOfExprType(E); break; } case DeclSpec::TST_error: return QualType(); } // Handle complex types. if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { if (getLangOptions().Freestanding) Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); Result = Context.getComplexType(Result); } assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary && "FIXME: imaginary types not supported yet!"); // See if there are any attributes on the declspec that apply to the type (as // opposed to the decl). if (const AttributeList *AL = DS.getAttributes()) ProcessTypeAttributeList(Result, AL); // Apply const/volatile/restrict qualifiers to T. if (unsigned TypeQuals = DS.getTypeQualifiers()) { // Enforce C99 6.7.3p2: "Types other than pointer types derived from object // or incomplete types shall not be restrict-qualified." C++ also allows // restrict-qualified references. if (TypeQuals & QualType::Restrict) { if (Result->isPointerType() || Result->isReferenceType()) { QualType EltTy = Result->isPointerType() ? Result->getAsPointerType()->getPointeeType() : Result->getAsReferenceType()->getPointeeType(); // If we have a pointer or reference, the pointee must have an object // incomplete type. if (!EltTy->isIncompleteOrObjectType()) { Diag(DS.getRestrictSpecLoc(), diag::err_typecheck_invalid_restrict_invalid_pointee) << EltTy << DS.getSourceRange(); TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier. } } else { Diag(DS.getRestrictSpecLoc(), diag::err_typecheck_invalid_restrict_not_pointer) << Result << DS.getSourceRange(); TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier. } } // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification // of a function type includes any type qualifiers, the behavior is // undefined." if (Result->isFunctionType() && TypeQuals) { // Get some location to point at, either the C or V location. SourceLocation Loc; if (TypeQuals & QualType::Const) Loc = DS.getConstSpecLoc(); else { assert((TypeQuals & QualType::Volatile) && "Has CV quals but not C or V?"); Loc = DS.getVolatileSpecLoc(); } Diag(Loc, diag::warn_typecheck_function_qualifiers) << Result << DS.getSourceRange(); } // C++ [dcl.ref]p1: // Cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef // (7.1.3) or of a template type argument (14.3), in which // case the cv-qualifiers are ignored. // FIXME: Shouldn't we be checking SCS_typedef here? if (DS.getTypeSpecType() == DeclSpec::TST_typename && TypeQuals && Result->isReferenceType()) { TypeQuals &= ~QualType::Const; TypeQuals &= ~QualType::Volatile; } Result = Result.getQualifiedType(TypeQuals); } return Result; }
/// \brief Build a reference type. /// /// \param T The type to which we'll be building a reference. /// /// \param Quals The cvr-qualifiers to be applied to the reference type. /// /// \param Loc The location of the entity whose type involves this /// reference type or, if there is no such entity, the location of the /// type that will have reference type. /// /// \param Entity The name of the entity that involves the reference /// type, if known. /// /// \returns A suitable reference type, if there are no /// errors. Otherwise, returns a NULL type. QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals, SourceLocation Loc, DeclarationName Entity) { if (LValueRef) { if (const RValueReferenceType *R = T->getAsRValueReferenceType()) { // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a // reference to a type T, and attempt to create the type "lvalue // reference to cv TD" creates the type "lvalue reference to T". // We use the qualifiers (restrict or none) of the original reference, // not the new ones. This is consistent with GCC. return Context.getLValueReferenceType(R->getPointeeType()). getQualifiedType(T.getCVRQualifiers()); } } if (T->isReferenceType()) { // C++ [dcl.ref]p4: There shall be no references to references. // // According to C++ DR 106, references to references are only // diagnosed when they are written directly (e.g., "int & &"), // but not when they happen via a typedef: // // typedef int& intref; // typedef intref& intref2; // // Parser::ParserDeclaratorInternal diagnoses the case where // references are written directly; here, we handle the // collapsing of references-to-references as described in C++ // DR 106 and amended by C++ DR 540. return T; } // C++ [dcl.ref]p1: // A declarator that specifies the type “reference to cv void” // is ill-formed. if (T->isVoidType()) { Diag(Loc, diag::err_reference_to_void); return QualType(); } // Enforce C99 6.7.3p2: "Types other than pointer types derived from // object or incomplete types shall not be restrict-qualified." if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) { Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee) << T; Quals &= ~QualType::Restrict; } // C++ [dcl.ref]p1: // [...] Cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef // (7.1.3) or of a template type argument (14.3), in which case // the cv-qualifiers are ignored. // // We diagnose extraneous cv-qualifiers for the non-typedef, // non-template type argument case within the parser. Here, we just // ignore any extraneous cv-qualifiers. Quals &= ~QualType::Const; Quals &= ~QualType::Volatile; // Handle restrict on references. if (LValueRef) return Context.getLValueReferenceType(T).getQualifiedType(Quals); return Context.getRValueReferenceType(T).getQualifiedType(Quals); }
/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making /// implicit conversions explicit and getting rid of data loss warnings. void CheckStaticCast(Sema &Self, Expr *&SrcExpr, QualType DestType, const SourceRange &OpRange) { // The order the tests is not entirely arbitrary. There is one conversion // that can be handled in two different ways. Given: // struct A {}; // struct B : public A { // B(); B(const A&); // }; // const A &a = B(); // the cast static_cast<const B&>(a) could be seen as either a static // reference downcast, or an explicit invocation of the user-defined // conversion using B's conversion constructor. // DR 427 specifies that the downcast is to be applied here. // FIXME: With N2812, casts to rvalue refs will change. // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". if (DestType->isVoidType()) { return; } // C++ 5.2.9p5, reference downcast. // See the function for details. // DR 427 specifies that this is to be applied before paragraph 2. if (TryStaticReferenceDowncast(Self, SrcExpr, DestType, OpRange) > TSC_NotApplicable) { return; } // N2844 5.2.9p3: An lvalue of type "cv1 T1" can be cast to type "rvalue // reference to cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". if (TryLValueToRValueCast(Self, SrcExpr, DestType, OpRange) > TSC_NotApplicable) { return; } // C++ 5.2.9p2: An expression e can be explicitly converted to a type T // [...] if the declaration "T t(e);" is well-formed, [...]. if (TryStaticImplicitCast(Self, SrcExpr, DestType, OpRange) > TSC_NotApplicable) { return; } // C++ 5.2.9p6: May apply the reverse of any standard conversion, except // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean // conversions, subject to further restrictions. // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal // of qualification conversions impossible. // The lvalue-to-rvalue, array-to-pointer and function-to-pointer conversions // are applied to the expression. QualType OrigSrcType = SrcExpr->getType(); Self.DefaultFunctionArrayConversion(SrcExpr); QualType SrcType = Self.Context.getCanonicalType(SrcExpr->getType()); // Reverse integral promotion/conversion. All such conversions are themselves // again integral promotions or conversions and are thus already handled by // p2 (TryDirectInitialization above). // (Note: any data loss warnings should be suppressed.) // The exception is the reverse of enum->integer, i.e. integer->enum (and // enum->enum). See also C++ 5.2.9p7. // The same goes for reverse floating point promotion/conversion and // floating-integral conversions. Again, only floating->enum is relevant. if (DestType->isEnumeralType()) { if (SrcType->isComplexType() || SrcType->isVectorType()) { // Fall through - these cannot be converted. } else if (SrcType->isArithmeticType() || SrcType->isEnumeralType()) { return; } } // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. if (TryStaticPointerDowncast(Self, SrcType, DestType, OpRange) > TSC_NotApplicable) { return; } // Reverse member pointer conversion. C++ 4.11 specifies member pointer // conversion. C++ 5.2.9p9 has additional information. // DR54's access restrictions apply here also. if (TryStaticMemberPointerUpcast(Self, SrcType, DestType, OpRange) > TSC_NotApplicable) { return; } // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to // void*. C++ 5.2.9p10 specifies additional restrictions, which really is // just the usual constness stuff. if (const PointerType *SrcPointer = SrcType->getAsPointerType()) { QualType SrcPointee = SrcPointer->getPointeeType(); if (SrcPointee->isVoidType()) { if (const PointerType *DestPointer = DestType->getAsPointerType()) { QualType DestPointee = DestPointer->getPointeeType(); if (DestPointee->isIncompleteOrObjectType()) { // This is definitely the intended conversion, but it might fail due // to a const violation. if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away) << "static_cast" << DestType << OrigSrcType << OpRange; } return; } } } } // We tried everything. Everything! Nothing works! :-( // FIXME: Error reporting could be a lot better. Should store the reason why // every substep failed and, at the end, select the most specific and report // that. Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic) << "static_cast" << DestType << OrigSrcType << OpRange; }