void MangoSubstructure::_correctQueryStereo (QueryMolecule &query) { // Remove stereobond marks that are connected with R-groups for (int v = query.vertexBegin(); v != query.vertexEnd(); v = query.vertexNext(v)) { if (!query.isRSite(v)) continue; const Vertex &vertex = query.getVertex(v); for (int nei = vertex.neiBegin(); nei != vertex.neiEnd(); nei = vertex.neiNext(nei)) { int edge = vertex.neiEdge(nei); if (query.cis_trans.getParity(edge) != 0) query.cis_trans.setParity(edge, 0); } } MoleculeRGroups &rgroups = query.rgroups; int n_rgroups = rgroups.getRGroupCount(); for (int i = 1; i <= n_rgroups; i++) { PtrPool<BaseMolecule> &frags = rgroups.getRGroup(i).fragments; for (int j = frags.begin(); j != frags.end(); j = frags.next(j)) { QueryMolecule &fragment = frags[j]->asQueryMolecule(); _correctQueryStereo(fragment); } } }
void MoleculePiSystemsMatcher::_markMappedPiSystems (QueryMolecule &query, const int *mapping) { for (int qv = query.vertexBegin(); qv != query.vertexEnd(); qv = query.vertexNext(qv)) { int v = mapping[qv]; if (v < 0) continue; // Such vertex must be ignored int pi_system_idx = _atom_pi_system_idx[v]; if (pi_system_idx == _NOT_IN_PI_SYSTEM) continue; if (!_pi_systems[pi_system_idx].initialized) _extractPiSystem(pi_system_idx); _Pi_System &pi_system = _pi_systems[pi_system_idx]; if (!pi_system.pi_system_mapped) { pi_system.pi_system_mapped = true; pi_system.localizer->unfixAll(); } } }
QueryMoleculeAromatizer::QueryMoleculeAromatizer (QueryMolecule &molecule, const AromaticityOptions &options) : AromatizerBase(molecule), TL_CP_GET(_pi_labels), TL_CP_GET(_aromatic_cycles) { _pi_labels.clear_resize(molecule.vertexEnd()); _aromatic_cycles.clear(); _aromatic_cycles.reserve(100); _mode = FUZZY; _collecting = false; _options = options; }
bool MoleculePiSystemsMatcher::_fixAtoms (QueryMolecule &query, const int *mapping) { // Fix charges for (int qv = query.vertexBegin(); qv != query.vertexEnd(); qv = query.vertexNext(qv)) { int v = mapping[qv]; if (v < 0) continue; // Such vertex must be ignored int pi_system_idx = _atom_pi_system_idx[v]; if (pi_system_idx == _NOT_IN_PI_SYSTEM) continue; _Pi_System &pi_system = _pi_systems[pi_system_idx]; QueryMolecule::Atom &qatom = query.getAtom(qv); int pv = pi_system.inv_mapping[v]; int charge = query.getAtomCharge(qv); if (charge != CHARGE_UNKNOWN) { bool ret = pi_system.localizer->fixAtomCharge(pv, charge); if (!ret) return false; } else if (qatom.hasConstraint(QueryMolecule::ATOM_CHARGE)) throw Error("Unsupported atom charge specified"); int valence = query.getExplicitValence(qv); if (valence != -1) { bool ret = pi_system.localizer->fixAtomConnectivity(pv, valence); if (!ret) return false; } else if (qatom.hasConstraint(QueryMolecule::ATOM_VALENCE)) throw Error("Unsupported atom charge specified"); } return true; }
bool QueryMoleculeAromatizer::_aromatizeBonds (QueryMolecule &mol, int additional_atom, const AromaticityOptions &options) { bool aromatized = false; // Mark edges that can be aromatic in some matching aromatized |= _aromatizeBondsFuzzy(mol, options); // Aromatize all aromatic cycles aromatized |= _aromatizeBondsExact(mol, options); MoleculeRGroups &rgroups = mol.rgroups; int n_rgroups = rgroups.getRGroupCount(); // Check if r-groups are attached with single bonds QS_DEF(Array<bool>, rgroups_attached_single); rgroups_attached_single.clear(); for (int v = mol.vertexBegin(); v != mol.vertexEnd(); v = mol.vertexNext(v)) { if (v == additional_atom) continue; if (mol.isRSite(v)) { // Check if neighbor bonds are single const Vertex &vertex = mol.getVertex(v); for (int nei = vertex.neiBegin(); nei != vertex.neiEnd(); nei = vertex.neiNext(nei)) { int edge = vertex.neiEdge(nei); QueryMolecule::Bond &bond = mol.getBond(edge); // DP TODO: implement smth. like Node::possibleOtherValueExcept() ... bool can_be_double = bond.possibleValue(QueryMolecule::BOND_ORDER, BOND_DOUBLE); bool can_be_triple = bond.possibleValue(QueryMolecule::BOND_ORDER, BOND_TRIPLE); bool can_be_arom = bond.possibleValue(QueryMolecule::BOND_ORDER, BOND_AROMATIC); if (can_be_double || can_be_triple || can_be_arom) { QS_DEF(Array<int>, sites); mol.getAllowedRGroups(v, sites); for (int j = 0; j < sites.size(); j++) { rgroups_attached_single.expandFill(sites[j] + 1, true); rgroups_attached_single[sites[j]] = false; } } } } } rgroups_attached_single.expandFill(n_rgroups + 1, true); for (int i = 1; i <= n_rgroups; i++) { PtrPool<BaseMolecule> &frags = rgroups.getRGroup(i).fragments; for (int j = frags.begin(); j != frags.end(); j = frags.next(j)) { QueryMolecule &fragment = frags[j]->asQueryMolecule(); aromatized |= _aromatizeRGroupFragment(fragment, rgroups_attached_single[i], options); } } return aromatized; }
QueryMoleculeAromatizer::QueryMoleculeAromatizer (QueryMolecule &molecule, const AromaticityOptions &options) : AromatizerBase(molecule), CP_INIT, TL_CP_GET(_pi_labels), TL_CP_GET(_aromatic_cycles) { _pi_labels.clear_resize(molecule.vertexEnd()); _aromatic_cycles.clear(); _aromatic_cycles.reserve(100); _mode = FUZZY; _collecting = false; _options = options; } void QueryMoleculeAromatizer::precalculatePiLabels () { for (int v_idx = _basemol.vertexBegin(); v_idx < _basemol.vertexEnd(); v_idx = _basemol.vertexNext(v_idx)) _pi_labels[v_idx] = _getPiLabel(v_idx); } bool QueryMoleculeAromatizer::_checkVertex (int v_idx) { return _pi_labels[v_idx].canBeAromatic(); } bool QueryMoleculeAromatizer::_isCycleAromatic (const int *cycle, int cycle_len) { QueryMolecule &query = (QueryMolecule &)_basemol; // Single/double bond can't be aromatic and Check if cycle wasn't aromatic bool all_aromatic = true; for (int i = 0; i < cycle_len; i++) { int a = cycle[i], b = cycle[(i + 1) % cycle_len]; int e_idx = _basemol.findEdgeIndex(a, b); if (!query.possibleBondOrder(e_idx, BOND_AROMATIC)) all_aromatic = false; } if (all_aromatic) return false; PiValue cycle_sum(0, 0); // Check Huckel's rule for (int i = 0; i < cycle_len; i++) { PiValue &cur = _pi_labels[cycle[i]]; if (cur.min == -1 || cur.max == -1) throw Error("interal error in _isCycleAromatic"); cycle_sum.max += cur.max; cycle_sum.min += cur.min; } // Check Huckel's rule if (_mode == EXACT) { if (cycle_sum.min != cycle_sum.max) return false; int sum = cycle_sum.min; // Check if cycle have pi-lables sum 4n+2 for drawn query if (sum % 4 != 2) return false; return true; } // // Fuzzy mode: check if circle can have 4n-2 value // if (cycle_sum.max - cycle_sum.min > 3) return true; int residue_min = (cycle_sum.min + 2) % 4; int residue_max = (cycle_sum.max + 2) % 4; if (residue_min == 0 || residue_min > residue_max) return true; return false; }
bool MoleculeSubstructureMatcher::_shouldUnfoldTargetHydrogens (QueryMolecule &query, bool is_fragment, bool disable_folding_query_h) { int i, j; for (i = query.vertexBegin(); i != query.vertexEnd(); i = query.vertexNext(i)) { // skip R-atoms if (query.isRSite(i)) continue; if (query.possibleAtomNumberAndIsotope(i, ELEM_H, 0)) { const Vertex &vertex = query.getVertex(i); // Degree 2 or higher => definilely not a hydrogen if (vertex.degree() > 1) continue; // Can be lone hydrogen? if (vertex.degree() == 0) return true; // degree is 1 at this point int edge_idx = vertex.neiEdge(vertex.neiBegin()); // is it is double or triple bond => not hydrogen if (query.getBondOrder(edge_idx) > 1) continue; // ring bond? if (query.getBondTopology(edge_idx) == TOPOLOGY_RING) continue; // can be something other than hydrogen? if (query.getAtomNumber(i) == -1) return true; if (is_fragment && i == query.vertexBegin()) // If first atom in a fragment is hydrogen then hydrogens should // be unfolded because of the matching logic: when fragment will be // matched this first hydrogen should match some atom. // If hydrogens is not be unfolded in this case then // [$([#1][N])]C will not match NC. return true; // If we need to find all embeddings then query hydrogens cannot be ignored: // For example, if we are searching number of matcher for N-[#1] in N then // it should 3 instead of 1 if (disable_folding_query_h) return true; // Check if hydrogen forms a cis-trans bond or stereocenter int nei_vertex_idx = vertex.neiVertex(vertex.neiBegin()); if (query.stereocenters.exists(nei_vertex_idx)) return true; // For example for this query hydrogens should be unfolded: [H]\\C=C/C const Vertex &nei_vertex = query.getVertex(nei_vertex_idx); for (int nei = nei_vertex.neiBegin(); nei != nei_vertex.neiEnd(); nei = nei_vertex.neiNext(nei)) { int edge = nei_vertex.neiEdge(nei); if (query.cis_trans.getParity(edge) != 0) return true; } } if (_shouldUnfoldTargetHydrogens_A(&query.getAtom(i), is_fragment, disable_folding_query_h)) return true; } MoleculeRGroups &rgroups = query.rgroups; int n_rgroups = rgroups.getRGroupCount(); for (i = 1; i <= n_rgroups; i++) { PtrPool<BaseMolecule> &frags = rgroups.getRGroup(i).fragments; for (j = frags.begin(); j != frags.end(); j = frags.next(j)) if (_shouldUnfoldTargetHydrogens(frags[j]->asQueryMolecule(), is_fragment, disable_folding_query_h)) return true; } return false; }