コード例 #1
0
//Jacobian for stress update algorithm
void
FiniteStrainPlasticMaterial::getJac(RankTwoTensor sig, RankFourTensor E_ijkl, Real flow_incr, RankFourTensor* dresid_dsig)
{

  RankTwoTensor sig_dev, flow_tensor, flow_dirn;
  RankTwoTensor dfi_dft,dfi_dsig;
  RankFourTensor dft_dsig,dfd_dft,dfd_dsig;
  Real sig_eqv/*,val*/;
  Real f1,f2,f3;
  RankFourTensor temp;


  sig_dev=getSigDev(sig);
  sig_eqv=getSigEqv(sig);
  getFlowTensor(sig,&flow_tensor);
  flow_dirn=flow_tensor;


  f1=3.0/(2.0*sig_eqv);
  f2=f1/3.0;
  f3=9.0/(4.0*pow(sig_eqv,3.0));

  for (int i=0;i<3;i++)
    for (int j=0;j<3;j++)
      for (int k=0;k<3;k++)
        for (int l=0;l<3;l++)
          dft_dsig(i,j,k,l)=f1*deltaFunc(i,k)*deltaFunc(j,l)-f2*deltaFunc(i,j)*deltaFunc(k,l)-f3*sig_dev(i,j)*sig_dev(k,l);

  dfd_dsig=dft_dsig;
  *dresid_dsig=E_ijkl.invSymm()+dfd_dsig*flow_incr;


}
コード例 #2
0
// Jacobian for stress update algorithm
void
FiniteStrainPlasticMaterial::getJac(const RankTwoTensor & sig,
                                    const RankFourTensor & E_ijkl,
                                    Real flow_incr,
                                    RankFourTensor & dresid_dsig)
{
  RankTwoTensor sig_dev, df_dsig, flow_dirn;
  RankTwoTensor dfi_dft, dfi_dsig;
  RankFourTensor dft_dsig, dfd_dft, dfd_dsig;
  Real sig_eqv;
  Real f1, f2, f3;
  RankFourTensor temp;

  sig_dev = sig.deviatoric();
  sig_eqv = getSigEqv(sig);
  df_dsig = dyieldFunction_dstress(sig);
  flow_dirn = flowPotential(sig);

  f1 = 3.0 / (2.0 * sig_eqv);
  f2 = f1 / 3.0;
  f3 = 9.0 / (4.0 * Utility::pow<3>(sig_eqv));

  dft_dsig = f1 * _deltaMixed - f2 * _deltaOuter - f3 * sig_dev.outerProduct(sig_dev);

  dfd_dsig = dft_dsig;
  dresid_dsig = E_ijkl.invSymm() + dfd_dsig * flow_incr;
}
コード例 #3
0
//Jacobian for stress update algorithm
void
FiniteStrainRatePlasticMaterial::getJac(const RankTwoTensor & sig, const RankFourTensor & E_ijkl, Real flow_incr, Real yield_stress, RankFourTensor & dresid_dsig)
{
  unsigned i, j, k ,l;
  RankTwoTensor sig_dev, flow_tensor, flow_dirn,fij;
  RankTwoTensor dfi_dft;
  RankFourTensor dft_dsig, dfd_dft, dfd_dsig, dfi_dsig;
  Real sig_eqv;
  Real f1, f2, f3;
  Real dfi_dseqv;

  sig_dev = sig.deviatoric();
  sig_eqv = getSigEqv(sig);

  getFlowTensor(sig, yield_stress, flow_tensor);

  flow_dirn = flow_tensor;
  dfi_dseqv = _ref_pe_rate * _dt * _exponent * std::pow(macaulayBracket(sig_eqv / yield_stress - 1.0), _exponent - 1.0) / yield_stress;

  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dfi_dsig(i,j,k,l) = flow_dirn(i,j) * flow_dirn(k,l) * dfi_dseqv; //d_flow_increment/d_sig

  f1 = 0.0;
  f2 = 0.0;
  f3 = 0.0;

  if (sig_eqv > 1e-8)
  {
    f1 = 3.0 / (2.0 * sig_eqv);
    f2 = f1 / 3.0;
    f3 = 9.0 / (4.0 * std::pow(sig_eqv, 3.0));
  }

  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dft_dsig(i,j,k,l) = f1 * deltaFunc(i,k) * deltaFunc(j,l) - f2 * deltaFunc(i,j) * deltaFunc(k,l) - f3 * sig_dev(i,j) * sig_dev(k,l); //d_flow_dirn/d_sig - 2nd part

  dfd_dsig = dft_dsig; //d_flow_dirn/d_sig
  dresid_dsig = E_ijkl.invSymm() + dfd_dsig * flow_incr + dfi_dsig; //Jacobian
}
コード例 #4
0
//Jacobian for stress update algorithm
void
FiniteStrainRatePlasticMaterial::getJac(const RankTwoTensor & sig, const RankFourTensor & E_ijkl, Real flow_incr, Real yield_stress, RankFourTensor & dresid_dsig)
{
  RankTwoTensor sig_dev, flow_tensor, flow_dirn,fij;
  RankTwoTensor dfi_dft;
  RankFourTensor dfd_dft, dfd_dsig, dfi_dsig;
  Real sig_eqv;
  Real f1, f2, f3;
  Real dfi_dseqv;

  sig_dev = sig.deviatoric();
  sig_eqv = getSigEqv(sig);

  getFlowTensor(sig, yield_stress, flow_tensor);

  flow_dirn = flow_tensor;
  dfi_dseqv = _ref_pe_rate * _dt * _exponent * std::pow(macaulayBracket(sig_eqv / yield_stress - 1.0), _exponent - 1.0) / yield_stress;

  dfi_dsig = flow_dirn.outerProduct(flow_dirn) * dfi_dseqv; //d_flow_increment/d_sig

  f1 = 0.0;
  f2 = 0.0;
  f3 = 0.0;

  if (sig_eqv > 1e-8)
  {
    f1 = 3.0 / (2.0 * sig_eqv);
    f2 = f1 / 3.0;
    f3 = 9.0 / (4.0 * std::pow(sig_eqv, 3.0));
  }

  dfd_dsig = f1 * _deltaMixed - f2 * _deltaOuter - f3 * sig_dev.outerProduct(sig_dev); //d_flow_dirn/d_sig - 2nd part

  //Jacobian
  dresid_dsig = E_ijkl.invSymm() + dfd_dsig * flow_incr + dfi_dsig;
}
コード例 #5
0
void
RedbackMechMaterialCC::getJac(const RankTwoTensor & sig,
                              const RankFourTensor & E_ijkl,
                              Real flow_incr,
                              Real sig_eqv,
                              Real pressure,
                              Real p_yield_stress,
                              Real q_yield_stress,
                              Real pc,
                              RankFourTensor & dresid_dsig)
{
  unsigned i, j, k, l;
  RankTwoTensor sig_dev, flow_dirn_vol, flow_dirn_dev, fij, flow_dirn, flow_tensor;
  RankTwoTensor dfi_dft;
  RankFourTensor dfd_dsig, dfi_dsig;
  Real f1, f2;
  Real dfi_dseqv_dev, dfi_dseqv_vol, dfi_dseqv;

  pc *= -1;

  sig_dev = sig.deviatoric();

  dfi_dseqv = getDerivativeFlowIncrement(sig, pressure, sig_eqv, pc, q_yield_stress, p_yield_stress);
  getFlowTensor(sig, sig_eqv, pressure, pc, flow_dirn);

  /* The following calculates the tensorial derivative (Jacobian) of the residual with respect to stress, dr_dsig
   * It consists of two terms: The first is
   * dr_dsig = (dfi_dseqv_dev*flow_dirn_dev(k,l)) * flow_dirn_dev(i,j)
   * which is the tensorial product of the flow increment tensor times the flow direction tensor
   *
   * The second is the product of the flow increment tensor times the derivative of the flow direction tensor
   * with respect to the stress tensor. See also REDBACK's documentation
   * */

  // This loop calculates the first term
  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dfi_dsig(i, j, k, l) = flow_dirn(i, j) * flow_dirn(k, l) * dfi_dseqv;

  // Real flow_tensor_norm = flow_dirn.L2norm();

  // This loop calculates the second term. Read REDBACK's documentation
  // (same as J2 plasticity case)
  f1 = 0.0;
  f2 = 0.0;
  if (sig_eqv > 1e-8)
  {
    f1 = 3.0 / (_slope_yield_surface * _slope_yield_surface);
    f2 = 2.0 / 9.0 - 1.0 / (_slope_yield_surface * _slope_yield_surface);
  }
  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dfd_dsig(i, j, k, l) =
            f1 * deltaFunc(i, k) * deltaFunc(j, l) -
            f2 * deltaFunc(i, j) * deltaFunc(k, l); // d_flow_dirn/d_sig - 2nd part (J2 plasticity)

  // dfd_dsig = dft_dsig1/flow_tensor_norm - 3.0 * dft_dsig2 /
  // (2*sig_eqv*flow_tensor_norm*flow_tensor_norm*flow_tensor_norm); //d_flow_dirn/d_sig
  // TODO: check if the previous two lines (i.e normalizing the flow vector) should be activated or not. Currently we
  // are using the non-unitary flow vector

  dresid_dsig = E_ijkl.invSymm() + dfd_dsig * flow_incr + dfi_dsig; // Jacobian
}
コード例 #6
0
/**
 * Implements the return-map algorithm via a Newton-Raphson process.
 * This idea is fully explained in Simo and Hughes "Computational
 * Inelasticity" Springer 1997, for instance, as well as many other
 * books on plasticity.
 * The basic idea is as follows.
 * Given: sig_old - the stress at the start of the "time step"
 *        plastic_strain_old - the plastic strain at the start of the "time step"
 *        eqvpstrain_old - equivalent plastic strain at the start of the "time step"
 *                         (In general we would be given some number of internal
 *                         parameters that the yield function depends upon.)
 *        delta_d - the prescribed strain increment for this "time step"
 * we want to determine the following parameters at the end of this "time step":
 *        sig - the stress
 *        plastic_strain - the plastic strain
 *        eqvpstrain - the equivalent plastic strain (again, in general, we would
 *                     have an arbitrary number of internal parameters).
 *
 * To determine these parameters, introduce
 *    the "yield function", f
 *    the "consistency parameter", flow_incr
 *    the "flow potential", flow_dirn_ij
 *    the "internal potential", internalPotential (in general there are as many internalPotential
 *        functions as there are internal parameters).
 * All three of f, flow_dirn_ij, and internalPotential, are functions of
 * sig and eqvpstrain.
 * To find sig, plastic_strain and eqvpstrain, we need to solve the following
 *   resid_ij = 0
 *   f = 0
 *   rep = 0
 * This is done by using Newton-Raphson.
 * There are 8 equations here: six from resid_ij=0 (more generally there are nine
 * but in this case resid is symmetric); one from f=0; one from rep=0 (more generally, for N
 * internal parameters there are N of these equations).
 *
 * resid_ij = flow_incr*flow_dirn_ij - (plastic_strain - plastic_strain_old)_ij
 *          = flow_incr*flow_dirn_ij - (E^{-1}(trial_stress - sig))_ij
 * Here trial_stress = E*(strain - plastic_strain_old)
 *      sig = E*(strain - plastic_strain)
 * Note: flow_dirn_ij is evaluated at sig and eqvpstrain (not the old values).
 *
 * f is the yield function, evaluated at sig and eqvpstrain
 *
 * rep = -flow_incr*internalPotential - (eqvpstrain - eqvpstrain_old)
 * Here internalPotential are evaluated at sig and eqvpstrain (not the old values).
 *
 * The Newton-Raphson procedure has sig, flow_incr, and eqvpstrain as its
 * variables.  Therefore we need the derivatives of resid_ij, f, and rep
 * with respect to these parameters
 *
 * In this associative J2 with isotropic hardening, things are a little more specialised.
 * (1) f = sqrt(3*s_ij*s_ij/2) - K(eqvpstrain)    (this is called "isotropic hardening")
 * (2) associativity means that flow_dirn_ij = df/d(sig_ij) = s_ij*sqrt(3/2/(s_ij*s_ij)), and
 *     this means that flow_dirn_ij*flow_dirn_ij = 3/2, so when resid_ij=0, we get
 *     (plastic_strain_dot)_ij*(plastic_strain_dot)_ij = (3/2)*flow_incr^2, where
 *     plastic_strain_dot = plastic_strain - plastic_strain_old
 * (3) The definition of equivalent plastic strain is through
 *     eqvpstrain_dot = sqrt(2*plastic_strain_dot_ij*plastic_strain_dot_ij/3), so
 *     using (2), we obtain eqvpstrain_dot = flow_incr, and this yields
 *     internalPotential = -1 in the "rep" equation.
 */
void
FiniteStrainPlasticMaterial::returnMap(const RankTwoTensor & sig_old,
                                       const Real eqvpstrain_old,
                                       const RankTwoTensor & plastic_strain_old,
                                       const RankTwoTensor & delta_d,
                                       const RankFourTensor & E_ijkl,
                                       RankTwoTensor & sig,
                                       Real & eqvpstrain,
                                       RankTwoTensor & plastic_strain)
{
  // the yield function, must be non-positive
  // Newton-Raphson sets this to zero if trial stress enters inadmissible region
  Real f;

  // the consistency parameter, must be non-negative
  // change in plastic strain in this timestep = flow_incr*flow_potential
  Real flow_incr = 0.0;

  // direction of flow defined by the potential
  RankTwoTensor flow_dirn;

  // Newton-Raphson sets this zero
  // resid_ij = flow_incr*flow_dirn_ij - (plastic_strain - plastic_strain_old)
  RankTwoTensor resid;

  // Newton-Raphson sets this zero
  // rep = -flow_incr*internalPotential - (eqvpstrain - eqvpstrain_old)
  Real rep;

  // change in the stress (sig) in a Newton-Raphson iteration
  RankTwoTensor ddsig;

  // change in the consistency parameter in a Newton-Raphson iteration
  Real dflow_incr = 0.0;

  // change in equivalent plastic strain in one Newton-Raphson iteration
  Real deqvpstrain = 0.0;

  // convenience variable that holds the change in plastic strain incurred during the return
  // delta_dp = plastic_strain - plastic_strain_old
  // delta_dp = E^{-1}*(trial_stress - sig), where trial_stress = E*(strain - plastic_strain_old)
  RankTwoTensor delta_dp;

  // d(yieldFunction)/d(stress)
  RankTwoTensor df_dsig;

  // d(resid_ij)/d(sigma_kl)
  RankFourTensor dr_dsig;

  // dr_dsig_inv_ijkl*dr_dsig_klmn = 0.5*(de_ij de_jn + de_ij + de_jm), where de_ij = 1 if i=j, but
  // zero otherwise
  RankFourTensor dr_dsig_inv;

  // d(yieldFunction)/d(eqvpstrain)
  Real fq;

  // yield stress at the start of this "time step" (ie, evaluated with
  // eqvpstrain_old).  It is held fixed during the Newton-Raphson return,
  // even if eqvpstrain != eqvpstrain_old.
  Real yield_stress;

  // measures of whether the Newton-Raphson process has converged
  Real err1, err2, err3;

  // number of Newton-Raphson iterations performed
  unsigned int iter = 0;

  // maximum number of Newton-Raphson iterations allowed
  unsigned int maxiter = 100;

  // plastic loading occurs if yieldFunction > toly
  Real toly = 1.0e-8;

  // Assume this strain increment does not induce any plasticity
  // This is the elastic-predictor
  sig = sig_old + E_ijkl * delta_d; // the trial stress
  eqvpstrain = eqvpstrain_old;
  plastic_strain = plastic_strain_old;

  yield_stress = getYieldStress(eqvpstrain); // yield stress at this equivalent plastic strain
  if (yieldFunction(sig, yield_stress) > toly)
  {
    // the sig just calculated is inadmissable.  We must return to the yield surface.
    // This is done iteratively, using a Newton-Raphson process.

    delta_dp.zero();

    sig = sig_old + E_ijkl * delta_d; // this is the elastic predictor

    flow_dirn = flowPotential(sig);

    resid = flow_dirn * flow_incr - delta_dp; // Residual 1 - refer Hughes Simo
    f = yieldFunction(sig, yield_stress);
    rep = -eqvpstrain + eqvpstrain_old - flow_incr * internalPotential(); // Residual 3 rep=0

    err1 = resid.L2norm();
    err2 = std::abs(f);
    err3 = std::abs(rep);

    while ((err1 > _rtol || err2 > _ftol || err3 > _eptol) &&
           iter < maxiter) // Stress update iteration (hardness fixed)
    {
      iter++;

      df_dsig = dyieldFunction_dstress(sig);
      getJac(sig, E_ijkl, flow_incr, dr_dsig);   // gets dr_dsig = d(resid_ij)/d(sig_kl)
      fq = dyieldFunction_dinternal(eqvpstrain); // d(f)/d(eqvpstrain)

      /**
       * The linear system is
       *   ( dr_dsig  flow_dirn  0  )( ddsig       )   ( - resid )
       *   ( df_dsig     0       fq )( dflow_incr  ) = ( - f     )
       *   (   0         1       -1 )( deqvpstrain )   ( - rep   )
       * The zeroes are: d(resid_ij)/d(eqvpstrain) = flow_dirn*d(df/d(sig_ij))/d(eqvpstrain) = 0
       * and df/d(flow_dirn) = 0  (this is always true, even for general hardening and
       * non-associative)
       * and d(rep)/d(sig_ij) = -flow_incr*d(internalPotential)/d(sig_ij) = 0
       */

      dr_dsig_inv = dr_dsig.invSymm();

      /**
       * Because of the zeroes and ones, the linear system is not impossible to
       * solve by hand.
       * NOTE: andy believes there was originally a sign-error in the next line.  The
       *       next line is unchanged, however andy's definition of fq is negative of
       *       the original definition of fq.  andy can't see any difference in any tests!
       */
      dflow_incr = (f - df_dsig.doubleContraction(dr_dsig_inv * resid) + fq * rep) /
                   (df_dsig.doubleContraction(dr_dsig_inv * flow_dirn) - fq);
      ddsig =
          dr_dsig_inv *
          (-resid -
           flow_dirn * dflow_incr); // from solving the top row of linear system, given dflow_incr
      deqvpstrain =
          rep + dflow_incr; // from solving the bottom row of linear system, given dflow_incr

      // update the variables
      flow_incr += dflow_incr;
      delta_dp -= E_ijkl.invSymm() * ddsig;
      sig += ddsig;
      eqvpstrain += deqvpstrain;

      // evaluate the RHS equations ready for next Newton-Raphson iteration
      flow_dirn = flowPotential(sig);
      resid = flow_dirn * flow_incr - delta_dp;
      f = yieldFunction(sig, yield_stress);
      rep = -eqvpstrain + eqvpstrain_old - flow_incr * internalPotential();

      err1 = resid.L2norm();
      err2 = std::abs(f);
      err3 = std::abs(rep);
    }

    if (iter >= maxiter)
      mooseError("Constitutive failure");

    plastic_strain += delta_dp;
  }
}
コード例 #7
0
/*
 *Solves for incremental plastic rate of deformation tensor and stress in unrotated frame.
 *Input: Strain incrment, 4th order elasticity tensor, stress tensor in previous incrmenent and
 *plastic rate of deformation tensor gradient.
 */
void
FiniteStrainPlasticMaterial::solveStressResid(RankTwoTensor sig_old,RankTwoTensor delta_d,RankFourTensor E_ijkl, RankTwoTensor *dp, RankTwoTensor *sig)
{

  RankTwoTensor sig_new,delta_dp,dpn;
  RankTwoTensor flow_tensor, flow_dirn;
  RankTwoTensor resid,ddsig;
  RankFourTensor dr_dsig,dr_dsig_inv;
  Real /*sig_eqv,*/flow_incr,f,dflow_incr;
  Real err1,err2,err3;
  unsigned int plastic_flag;
  unsigned int iter,maxiter=100;
  Real eqvpstrain,eqvpstrain_old,deqvpstrain,fq,rep;
  Real yield_stress;


  sig_new=sig_old+E_ijkl*delta_d;
  eqvpstrain_old=eqvpstrain=_eqv_plastic_strain_old[_qp];
  yield_stress=getYieldStress(eqvpstrain);
  plastic_flag=isPlastic(sig_new,yield_stress);//Check of plasticity for elastic predictor

  if (plastic_flag==1)
  {

    iter=0;

    dflow_incr=0.0;
    flow_incr=0.0;
    delta_dp.zero();
    deqvpstrain=0.0;

    sig_new=sig_old+E_ijkl*delta_d;

    getFlowTensor(sig_new,&flow_tensor);
    flow_dirn=flow_tensor;


    resid=flow_dirn*flow_incr-delta_dp;//Residual 1 - refer Hughes Simo
    f=getSigEqv(sig_new)-yield_stress;//Residual 2 - f=0
    rep=-eqvpstrain+eqvpstrain_old+flow_incr;//Residual 3 rep=0

    err1=resid.L2norm();
    err2=fabs(f);
    err3=fabs(rep);


    while ((err1 > _rtol || err2 > _ftol || err3 > _eptol) && iter < maxiter )//Stress update iteration (hardness fixed)
    {


      iter++;

      getJac(sig_new,E_ijkl,flow_incr,&dr_dsig);//Jacobian
      dr_dsig_inv=dr_dsig.invSymm();
      fq=getdYieldStressdPlasticStrain(eqvpstrain);

      dflow_incr=(f-flow_tensor.doubleContraction(dr_dsig_inv*resid)+fq*rep)/(flow_tensor.doubleContraction(dr_dsig_inv*flow_dirn)-fq);
      ddsig=dr_dsig_inv*(-resid-flow_dirn*dflow_incr);

      flow_incr+=dflow_incr;
      delta_dp-=E_ijkl.invSymm()*ddsig;
      sig_new+=ddsig;
      deqvpstrain=rep+dflow_incr;
      eqvpstrain+=deqvpstrain;

      getFlowTensor(sig_new,&flow_tensor);
      flow_dirn=flow_tensor;

      resid=flow_dirn*flow_incr-delta_dp;
      f=getSigEqv(sig_new)-yield_stress;
      rep=-eqvpstrain+eqvpstrain_old+flow_incr;

      err1=resid.L2norm();
      err2=fabs(f);
      err3=fabs(rep);

    }

    if (iter>=maxiter)
    {
      _stress[_qp](2,2)=1e6;
      printf("Constitutive Error: Too many iterations %f %f %f \n",err1,err2, err3);//Convergence failure
      return;
    }

    dpn=*dp+delta_dp;

  }

  *dp=dpn;//Plastic strain in unrotated configuration
  *sig=sig_new;
  _eqv_plastic_strain[_qp]=eqvpstrain;
}
コード例 #8
0
void
RedbackMechMaterialCC::getJac(const RankTwoTensor & sig,
                              const RankFourTensor & E_ijkl,
                              Real flow_incr,
                              Real sig_eqv,
                              Real pressure,
                              Real p_yield_stress,
                              Real q_yield_stress,
                              Real yield_stress,
                              RankFourTensor & dresid_dsig)
{
  unsigned i, j, k, l;
  RankTwoTensor sig_dev, flow_dirn_vol, flow_dirn_dev, fij, flow_dirn, flow_tensor;
  RankTwoTensor dfi_dft;
  RankFourTensor dfd_dsig, dfi_dsig;
  Real f1, f2, f3;
  Real dfi_dp, dfi_dseqv;

  Real pc = -yield_stress;
  sig_dev = sig.deviatoric();

  getDerivativeFlowIncrement(dfi_dp, dfi_dseqv, sig, pressure, sig_eqv, pc, q_yield_stress, p_yield_stress);
  getFlowTensor(sig, sig_eqv, pressure, q_yield_stress, p_yield_stress, yield_stress, flow_dirn);

  /* The following calculates the tensorial derivative (Jacobian) of the
   *residual with respect to stress, dr_dsig
   * It consists of two terms: The first is
   * dr_dsig = (dfi_dseqv_dev*flow_dirn_dev(k,l)) * flow_dirn_dev(i,j)
   * which is the tensorial product of the flow increment tensor times the flow
   *direction tensor
   *
   * The second is the product of the flow increment tensor times the derivative
   *of the flow direction tensor
   * with respect to the stress tensor. See also REDBACK's documentation
   * */

  f1 = 0.0;
  f2 = 0.0;
  f3 = 0.0;
  if (sig_eqv > 1e-10)
  {
    f1 = 3.0 / (_slope_yield_surface * _slope_yield_surface);
    f2 = 2.0 / 9.0 - 1.0 / (_slope_yield_surface * _slope_yield_surface);
    f3 = 3.0 / (2.0 * sig_eqv);
  }
  // This loop calculates the first term
  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dfi_dsig(i, j, k, l) = flow_dirn(i, j) * (f3 * sig_dev(k, l) * dfi_dseqv + dfi_dp * deltaFunc(k, l) / 3.0);

  // This loop calculates the second term.
  for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
      for (k = 0; k < 3; ++k)
        for (l = 0; l < 3; ++l)
          dfd_dsig(i, j, k, l) = f1 * deltaFunc(i, k) * deltaFunc(j, l) + f2 * deltaFunc(i, j) * deltaFunc(k, l);

  dresid_dsig = E_ijkl.invSymm() + dfd_dsig * flow_incr + dfi_dsig; // Jacobian
}
コード例 #9
0
/*
 *Solves for incremental plastic rate of deformation tensor and stress in unrotated frame.
 *Input: Strain incrment, 4th order elasticity tensor, stress tensor in previous incrmenent and
 *plastic rate of deformation tensor.
 */
void
FiniteStrainRatePlasticMaterial::returnMap(const RankTwoTensor & sig_old, const RankTwoTensor & delta_d, const RankFourTensor & E_ijkl, RankTwoTensor & dp, RankTwoTensor & sig)
{
  RankTwoTensor sig_new, delta_dp, dpn;
  RankTwoTensor flow_tensor, flow_dirn;
  RankTwoTensor resid,ddsig;
  RankFourTensor dr_dsig, dr_dsig_inv;
  Real flow_incr, flow_incr_tmp;
  Real err1, err3, tol1, tol3;
  unsigned int iterisohard, iter, maxiterisohard = 20, maxiter = 50;
  Real eqvpstrain;
  Real yield_stress, yield_stress_prev;

  tol1 = 1e-10;
  tol3 = 1e-6;

  iterisohard = 0;
  eqvpstrain = std::pow(2.0/3.0,0.5) * dp.L2norm();
  yield_stress = getYieldStress(eqvpstrain);

  err3 = 1.1 * tol3;

  while (err3 > tol3 && iterisohard < maxiterisohard) //Hardness update iteration
  {
    iterisohard++;
    iter = 0;
    delta_dp.zero();

    sig_new = sig_old + E_ijkl * delta_d;
    flow_incr=_ref_pe_rate*_dt * std::pow(macaulayBracket(getSigEqv(sig_new) / yield_stress - 1.0), _exponent);

    getFlowTensor(sig_new, yield_stress, flow_tensor);
    flow_dirn = flow_tensor;

    resid = flow_dirn * flow_incr - delta_dp;
    err1 = resid.L2norm();

    while (err1 > tol1  && iter < maxiter) //Stress update iteration (hardness fixed)
    {
      iter++;

      getJac(sig_new, E_ijkl, flow_incr, yield_stress, dr_dsig); //Jacobian
      dr_dsig_inv = dr_dsig.invSymm();

      ddsig = -dr_dsig_inv * resid;

      sig_new += ddsig; //Update stress
      delta_dp -= E_ijkl.invSymm() * ddsig; //Update plastic rate of deformation tensor

      flow_incr_tmp = _ref_pe_rate * _dt * std::pow(macaulayBracket(getSigEqv(sig_new) / yield_stress - 1.0), _exponent);

      if (flow_incr_tmp < 0.0) //negative flow increment not allowed
        mooseError("Constitutive Error-Negative flow increment: Reduce time increment.");

      flow_incr = flow_incr_tmp;

      getFlowTensor(sig_new, yield_stress, flow_tensor);
      flow_dirn = flow_tensor;

      resid = flow_dirn * flow_incr - delta_dp; //Residual

      err1=resid.L2norm();
    }

    if (iter>=maxiter)//Convergence failure
      mooseError("Constitutive Error-Too many iterations: Reduce time increment.\n"); //Convergence failure

    dpn = dp + delta_dp;
    eqvpstrain = std::pow(2.0/3.0, 0.5) * dpn.L2norm();

    yield_stress_prev = yield_stress;
    yield_stress = getYieldStress(eqvpstrain);

    err3 = std::abs(yield_stress-yield_stress_prev);
  }

  if (iterisohard>=maxiterisohard)
    mooseError("Constitutive Error-Too many iterations in Hardness Update:Reduce time increment.\n"); //Convergence failure

  dp = dpn; //Plastic rate of deformation tensor in unrotated configuration
  sig = sig_new;
}
コード例 #10
0
bool
FiniteStrainPlasticBase::returnMap(const RankTwoTensor & stress_old, const RankTwoTensor & plastic_strain_old, const std::vector<Real> & intnl_old, const RankTwoTensor & delta_d, const RankFourTensor & E_ijkl, RankTwoTensor & stress, RankTwoTensor & plastic_strain, std::vector<Real> & intnl, std::vector<Real> & f, unsigned int & iter)
{

  // Assume this strain increment does not induce any plasticity
  // This is the elastic-predictor
  stress = stress_old + E_ijkl * delta_d; // the trial stress
  plastic_strain = plastic_strain_old;
  for (unsigned i = 0; i < intnl_old.size() ; ++i)
    intnl[i] = intnl_old[i];
  iter = 0;

  yieldFunction(stress, intnl, f);

  Real nr_res2 = 0;
  for (unsigned i = 0 ; i < f.size() ; ++i)
    nr_res2 += 0.5*std::pow( std::max(f[i], 0.0)/_f_tol[i], 2);

  if (nr_res2 < 0.5)
    // a purely elastic increment.
    // All output variables have been calculated
    return true;


  // So, from here on we know that the trial stress
  // is inadmissible, and we have to return from that
  // value to the yield surface.  There are three
  // types of constraints we have to satisfy, listed
  // below, and calculated in calculateConstraints(...)

  // Plastic strain constraint, L2 norm must be zero (up to a tolerance)
  RankTwoTensor epp;

  // Yield function constraint passed to this function as
  // std::vector<Real> & f
  // Each yield function must be <= 0 (up to tolerance)

  // Internal constraint(s), must be zero (up to a tolerance)
  std::vector<Real> ic;


  // During the Newton-Raphson procedure, we'll be
  // changing the following parameters in order to
  // (attempt to) satisfy the constraints.
  RankTwoTensor dstress; // change in stress
  std::vector<Real> dpm; // change in plasticity multipliers ("consistency parameters")
  std::vector<Real>  dintnl; // change in internal parameters



  // The following are used in the Newton-Raphson

  // Inverse of E_ijkl (assuming symmetric)
  RankFourTensor E_inv = E_ijkl.invSymm();

  // convenience variable that holds the change in plastic strain incurred during the return
  // delta_dp = plastic_strain - plastic_strain_old
  // delta_dp = E^{-1}*(trial_stress - stress), where trial_stress = E*(strain - plastic_strain_old)
  RankTwoTensor delta_dp;

  // The "consistency parameters" (plastic multipliers)
  // Change in plastic strain in this timestep = pm*flowPotential
  // Each pm must be non-negative
  std::vector<Real> pm;
  pm.assign(numberOfYieldFunctions(), 0.0);

  // whether line-searching was successful
  bool ls_success = true;

  // The Newton-Raphson loops
  while (nr_res2 > 0.5 && iter < _max_iter && ls_success)
  {
    iter++;

    // calculate dstress, dpm and dintnl for one full Newton-Raphson step
    nrStep(stress, intnl_old, intnl, pm, E_inv, delta_dp, dstress, dpm, dintnl);

    // perform a line search
    // The line-search will exit with updated values
    ls_success = lineSearch(nr_res2, stress, intnl_old, intnl, pm, E_inv, delta_dp, dstress, dpm, dintnl, f, epp, ic);
  }


  if (iter >= _max_iter || !ls_success)
  {
    stress = stress_old;
    for (unsigned i = 0; i < intnl_old.size() ; ++i)
      intnl[i] = intnl_old[i];
    return false;
  }
  else
  {
    plastic_strain += delta_dp;
    return true;
  }

}