void StressDivergenceTensors::computeFiniteDeformJacobian() { const RankTwoTensor I(RankTwoTensor::initIdentity); const RankFourTensor II_ijkl = I.mixedProductIkJl(I); // Bring back to unrotated config const RankTwoTensor unrotated_stress = (*_rotation_increment)[_qp].transpose() * _stress[_qp] * (*_rotation_increment)[_qp]; // Incremental deformation gradient Fhat const RankTwoTensor Fhat = (*_deformation_gradient)[_qp] * (*_deformation_gradient_old)[_qp].inverse(); const RankTwoTensor Fhatinv = Fhat.inverse(); const RankTwoTensor rot_times_stress = (*_rotation_increment)[_qp] * unrotated_stress; const RankFourTensor dstress_drot = I.mixedProductIkJl(rot_times_stress) + I.mixedProductJkIl(rot_times_stress); const RankFourTensor rot_rank_four = (*_rotation_increment)[_qp].mixedProductIkJl((*_rotation_increment)[_qp]); const RankFourTensor drot_dUhatinv = Fhat.mixedProductIkJl(I); const RankTwoTensor A = I - Fhatinv; // Ctilde = Chat^-1 - I const RankTwoTensor Ctilde = A * A.transpose() - A - A.transpose(); const RankFourTensor dCtilde_dFhatinv = -I.mixedProductIkJl(A) - I.mixedProductJkIl(A) + II_ijkl + I.mixedProductJkIl(I); // Second order approximation of Uhat - consistent with strain increment definition // const RankTwoTensor Uhat = I - 0.5 * Ctilde - 3.0/8.0 * Ctilde * Ctilde; RankFourTensor dUhatinv_dCtilde = 0.5 * II_ijkl - 1.0 / 8.0 * (I.mixedProductIkJl(Ctilde) + Ctilde.mixedProductIkJl(I)); RankFourTensor drot_dFhatinv = drot_dUhatinv * dUhatinv_dCtilde * dCtilde_dFhatinv; drot_dFhatinv -= Fhat.mixedProductIkJl((*_rotation_increment)[_qp].transpose()); _finite_deform_Jacobian_mult[_qp] = dstress_drot * drot_dFhatinv; const RankFourTensor dstrain_increment_dCtilde = -0.5 * II_ijkl + 0.25 * (I.mixedProductIkJl(Ctilde) + Ctilde.mixedProductIkJl(I)); _finite_deform_Jacobian_mult[_qp] += rot_rank_four * _Jacobian_mult[_qp] * dstrain_increment_dCtilde * dCtilde_dFhatinv; _finite_deform_Jacobian_mult[_qp] += Fhat.mixedProductJkIl(_stress[_qp]); const RankFourTensor dFhat_dFhatinv = -Fhat.mixedProductIkJl(Fhat.transpose()); const RankTwoTensor dJ_dFhatinv = dFhat_dFhatinv.innerProductTranspose(Fhat.ddet()); // Component from Jacobian derivative _finite_deform_Jacobian_mult[_qp] += _stress[_qp].outerProduct(dJ_dFhatinv); // Derivative of Fhatinv w.r.t. undisplaced coordinates const RankTwoTensor Finv = (*_deformation_gradient)[_qp].inverse(); const RankFourTensor dFhatinv_dGradu = -Fhatinv.mixedProductIkJl(Finv.transpose()); _finite_deform_Jacobian_mult[_qp] = _finite_deform_Jacobian_mult[_qp] * dFhatinv_dGradu; }
void ComputeRSphericalFiniteStrain::computeProperties() { // Method from Rashid, 1993 RankTwoTensor ave_Fhat; Real ave_dfgrd_det = 0.0; for (_qp = 0; _qp < _qrule->n_points(); ++_qp) { // Deformation gradient calculation in cylindrical coordinates RankTwoTensor A; // Deformation gradient RankTwoTensor Fbar; // Old Deformation gradient // Step through calculating the current and old deformation gradients // Only diagonal components are nonzero because this is a 1D material // Note: x_disp is the radial displacement A(0,0) = (*_grad_disp[0])[_qp](0); Fbar(0,0) = (*_grad_disp_old[0])[_qp](0); // The polar and azimuthal strains are functions of radial displacement if (!MooseUtils::relativeFuzzyEqual(_q_point[_qp](0), 0.0)) { A(1,1) = (*_disp[0])[_qp] / _q_point[_qp](0); Fbar(1,1) = _disp_old_0[_qp] / _q_point[_qp](0); } // The polar and azimuthal strains are equalivalent in this 1D problem A(2,2) = A(1,1); Fbar(2,2) = Fbar(1,1); // Gauss point deformation gradient _deformation_gradient[_qp] = A; _deformation_gradient[_qp].addIa(1.0); // very nearly A = gradU - gradUold, adapted to cylindrical coords A -= Fbar; // Fbar = ( I + gradUold) Fbar.addIa(1.0); // Incremental deformation gradient _Fhat = I + A Fbar^-1 _Fhat[_qp] = A * Fbar.inverse(); _Fhat[_qp].addIa(1.0); computeQpStrain(); } }
bool FlowRateModel::computeDflowrateDstress(RankTwoTensor & dflowrate_dstress, const RankTwoTensor & pk2, const RankTwoTensor & ce, const std::vector<Real> & internal_var, const unsigned int start_index, const unsigned int /*size*/) const { RankTwoTensor pk2_dev = computePK2Deviatoric(pk2, ce); Real eqv_stress = computeEqvStress(pk2_dev, ce); Real sigy = _flow_stress_uo.value(internal_var[start_index]); Real dflowrate_dseqv = _ref_flow_rate * _flow_rate_exponent * std::pow(eqv_stress/sigy,_flow_rate_exponent-1) * 1/sigy; if (dflowrate_dseqv > _flow_rate_tol) { #ifdef DEBUG mooseWarning("dflowrate_dseqv greater than " << _flow_rate_tol << " " << dflowrate_dseqv << " " << eqv_stress << " " << sigy ); #endif return false; } RankTwoTensor tau = pk2_dev * ce; RankTwoTensor dseqv_dpk2dev; dseqv_dpk2dev.zero(); if (eqv_stress > 0) dseqv_dpk2dev = 3/(2 * eqv_stress) * tau * ce; RankTwoTensor ce_inv = ce.inverse(); RankFourTensor dpk2dev_dpk2; for (unsigned int i = 0; i < LIBMESH_DIM; ++i) for (unsigned int j = 0; j < LIBMESH_DIM; ++j) for (unsigned int k = 0; k < LIBMESH_DIM; ++k) for (unsigned int l = 0; l < LIBMESH_DIM; ++l) { dpk2dev_dpk2(i, j, k, l) = 0.0; if (i==k && j==l) dpk2dev_dpk2(i, j, k, l) = 1.0; dpk2dev_dpk2(i, j, k, l) -= ce_inv(i, j) * ce(k, l)/3.0; } dflowrate_dstress = dflowrate_dseqv * dpk2dev_dpk2.transposeMajor() * dseqv_dpk2dev; return true; }
void FiniteStrainMaterial::computeQpStrain(const RankTwoTensor & Fhat) { //Cinv - I = A A^T - A - A^T; RankTwoTensor A; //A = I - Fhatinv A.addIa(1.0); A -= Fhat.inverse(); RankTwoTensor Cinv_I = A*A.transpose() - A - A.transpose(); //strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ... _strain_increment[_qp] = -Cinv_I*0.5 + Cinv_I*Cinv_I*0.25; /*RankTwoTensor Chat = Fhat.transpose()*Fhat; RankTwoTensor A = Chat; A.addIa(-1.0); RankTwoTensor B = Chat*0.25; B.addIa(-0.75); _strain_increment[_qp] = -B*A;*/ RankTwoTensor D = _strain_increment[_qp]/_t_step; _strain_rate[_qp] = D; //Calculate rotation R_incr RankTwoTensor invFhat(Fhat.inverse()); std::vector<Real> a(3); a[0] = invFhat(1,2) - invFhat(2,1); a[1] = invFhat(2,0) - invFhat(0,2); a[2] = invFhat(0,1) - invFhat(1,0); Real q = (a[0]*a[0] + a[1]*a[1] + a[2]*a[2])/4.0; Real trFhatinv_1 = invFhat.trace() - 1.0; Real p = trFhatinv_1*trFhatinv_1/4.0; // Real y = 1.0/((q + p)*(q + p)*(q + p)); /*Real C1 = std::sqrt(p * (1 + (p*(q+q+(q+p))) * (1-(q+p)) * y)); Real C2 = 0.125 + q * 0.03125 * (p*p - 12*(p-1)) / (p*p); Real C3 = 0.5 * std::sqrt( (p*q*(3-q) + p*p*p + q*q)*y ); */ Real C1 = std::sqrt(p + 3.0*p*p*(1.0 - (p + q))/((p+q)*(p+q)) - 2.0*p*p*p*(1-(p+q))/((p+q)*(p+q)*(p+q))); //cos theta_a Real C2 = 0.0; if (q > 0.01) C2 = (1.0 - C1)/(4.0*q); // (1-cos theta_a)/4q else //alternate form for small q C2 = 0.125 + q*0.03125*(p*p - 12*(p-1))/(p*p) + q*q*(p - 2.0)*(p*p - 10.0*p + 32.0)/(p*p*p) + q*q*q*(1104.0 - 992.0*p + 376.0*p*p - 72*p*p*p + 5.0*p*p*p*p)/(512.0*p*p*p*p); Real C3 = 0.5*std::sqrt((p*q*(3.0 - q) + p*p*p + q*q)/((p + q)*(p + q)*(p + q))); //sin theta_a/(2 sqrt(q)) //Calculate incremental rotation. Note that this value is the transpose of that from Rashid, 93, so we transpose it before storing RankTwoTensor R_incr; R_incr.addIa(C1); for (unsigned int i=0; i<3; ++i) for (unsigned int j = 0; j < 3; ++j) R_incr(i,j) += C2*a[i]*a[j]; R_incr(0,1) += C3*a[2]; R_incr(0,2) -= C3*a[1]; R_incr(1,0) -= C3*a[2]; R_incr(1,2) += C3*a[0]; R_incr(2,0) += C3*a[1]; R_incr(2,1) -= C3*a[0]; _rotation_increment[_qp] = R_incr.transpose(); }
RankTwoTensor HEVPFlowRatePowerLawJ2::computePK2Deviatoric(const RankTwoTensor & pk2, const RankTwoTensor & ce) const { return pk2 - (pk2.doubleContraction(ce) * ce.inverse()) / 3.0; }
void ComputeFiniteStrain::computeQpIncrements(RankTwoTensor & total_strain_increment, RankTwoTensor & rotation_increment) { switch (_decomposition_method) { case DecompMethod::TaylorExpansion: { // inverse of _Fhat RankTwoTensor invFhat(_Fhat[_qp].inverse()); // A = I - _Fhat^-1 RankTwoTensor A(RankTwoTensor::initIdentity); A -= invFhat; // Cinv - I = A A^T - A - A^T; RankTwoTensor Cinv_I = A * A.transpose() - A - A.transpose(); // strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ... total_strain_increment = -Cinv_I * 0.5 + Cinv_I * Cinv_I * 0.25; const Real a[3] = { invFhat(1, 2) - invFhat(2, 1), invFhat(2, 0) - invFhat(0, 2), invFhat(0, 1) - invFhat(1, 0) }; Real q = (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]) / 4.0; Real trFhatinv_1 = invFhat.trace() - 1.0; const Real p = trFhatinv_1 * trFhatinv_1 / 4.0; // cos theta_a const Real C1 = std::sqrt(p + 3.0 * std::pow(p, 2.0) * (1.0 - (p + q)) / std::pow(p + q, 2.0) - 2.0 * std::pow(p, 3.0) * (1.0 - (p + q)) / std::pow(p + q, 3.0)); Real C2; if (q > 0.01) // (1-cos theta_a)/4q C2 = (1.0 - C1) / (4.0 * q); else //alternate form for small q C2 = 0.125 + q * 0.03125 * (std::pow(p, 2.0) - 12.0 * (p - 1.0)) / std::pow(p, 2.0) + std::pow(q, 2.0) * (p - 2.0) * (std::pow(p, 2.0) - 10.0 * p + 32.0) / std::pow(p, 3.0) + std::pow(q, 3.0) * (1104.0 - 992.0 * p + 376.0 * std::pow(p, 2.0) - 72.0 * std::pow(p, 3.0) + 5.0 * std::pow(p, 4.0)) / (512.0 * std::pow(p, 4.0)); const Real C3 = 0.5 * std::sqrt((p * q * (3.0 - q) + std::pow(p, 3.0) + std::pow(q, 2.0)) / std::pow(p + q, 3.0)); //sin theta_a/(2 sqrt(q)) // Calculate incremental rotation. Note that this value is the transpose of that from Rashid, 93, so we transpose it before storing RankTwoTensor R_incr; R_incr.addIa(C1); for (unsigned int i = 0; i < 3; ++i) for (unsigned int j = 0; j < 3; ++j) R_incr(i,j) += C2 * a[i] * a[j]; R_incr(0,1) += C3 * a[2]; R_incr(0,2) -= C3 * a[1]; R_incr(1,0) -= C3 * a[2]; R_incr(1,2) += C3 * a[0]; R_incr(2,0) += C3 * a[1]; R_incr(2,1) -= C3 * a[0]; rotation_increment = R_incr.transpose(); break; } case DecompMethod::EigenSolution: { std::vector<Real> e_value(3); RankTwoTensor e_vector, N1, N2, N3; RankTwoTensor Chat = _Fhat[_qp].transpose() * _Fhat[_qp]; Chat.symmetricEigenvaluesEigenvectors(e_value, e_vector); const Real lambda1 = std::sqrt(e_value[0]); const Real lambda2 = std::sqrt(e_value[1]); const Real lambda3 = std::sqrt(e_value[2]); N1.vectorOuterProduct(e_vector.column(0), e_vector.column(0)); N2.vectorOuterProduct(e_vector.column(1), e_vector.column(1)); N3.vectorOuterProduct(e_vector.column(2), e_vector.column(2)); RankTwoTensor Uhat = N1 * lambda1 + N2 * lambda2 + N3 * lambda3; RankTwoTensor invUhat(Uhat.inverse()); rotation_increment = _Fhat[_qp] * invUhat; total_strain_increment = N1 * std::log(lambda1) + N2 * std::log(lambda2) + N3 * std::log(lambda3); break; } default: mooseError("ComputeFiniteStrain Error: Pass valid decomposition type: TaylorExpansion or EigenSolution."); } }
RankTwoTensor testnewExampleMaterial::computePK2Deviatoric(const RankTwoTensor & pk2, const RankTwoTensor & ce) const { return pk2 - (pk2.doubleContraction(ce) * ce.inverse())/3.0; }
RankTwoTensor testnewExampleMaterial::computeLp(const RankTwoTensor & fp_dot, const RankTwoTensor & fp) const { return fp_dot*fp.inverse(); }