//-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigNNCData::processConnections(const RigMainGrid& mainGrid) { //cvf::Trace::show("NNC: Total number: " + cvf::String((int)m_connections.size())); for (size_t cnIdx = 0; cnIdx < m_connections.size(); ++cnIdx) { const RigCell& c1 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c1GlobIdx]; const RigCell& c2 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c2GlobIdx]; bool foundAnyOverlap = false; std::vector<size_t> connectionPolygon; std::vector<cvf::Vec3d> connectionIntersections; cvf::StructGridInterface::FaceType connectionFace = cvf::StructGridInterface::NO_FACE; connectionFace = calculateCellFaceOverlap(c1, c2, mainGrid, &connectionPolygon, &connectionIntersections); if (connectionFace != cvf::StructGridInterface::NO_FACE) { foundAnyOverlap = true; // Found an overlap polygon. Store data about connection m_connections[cnIdx].m_c1Face = connectionFace; for (size_t pIdx = 0; pIdx < connectionPolygon.size(); ++pIdx) { if (connectionPolygon[pIdx] < mainGrid.nodes().size()) m_connections[cnIdx].m_polygon.push_back(mainGrid.nodes()[connectionPolygon[pIdx]]); else m_connections[cnIdx].m_polygon.push_back(connectionIntersections[connectionPolygon[pIdx] - mainGrid.nodes().size()]); } // Add to search map, possibly not needed //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][connectionFace].push_back(cnIdx); //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::oppositeFace(connectionFace].push_back(cnIdx); } else { //cvf::Trace::show("NNC: No overlap found for : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + "C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx)); } } }
//-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::StructGridInterface::FaceType RigNNCData::calculateCellFaceOverlap(const RigCell &c1, const RigCell &c2, const RigMainGrid &mainGrid, std::vector<size_t>* connectionPolygon, std::vector<cvf::Vec3d>* connectionIntersections) { // Try to find the shared face bool isPossibleNeighborInDirection[6]={ true, true, true, true, true, true }; if ( c1.hostGrid() == c2.hostGrid() ) { char hasNeighbourInAnyDirection = 0; size_t i1, j1, k1; c1.hostGrid()->ijkFromCellIndex(c1.gridLocalCellIndex(), &i1, &j1, &k1); size_t i2, j2, k2; c2.hostGrid()->ijkFromCellIndex(c2.gridLocalCellIndex(), &i2, &j2, &k2); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ((i1 + 1) == i2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ((i2 + 1) == i1); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ((j1 + 1) == j2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ((j2 + 1) == j1); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ((k1 + 1) == k2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ((k2 + 1) == k1); hasNeighbourInAnyDirection = isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] + isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] + isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K]; // If cell 2 is not adjancent with respect to any of the six ijk directions, // assume that we have no overlapping area. if ( !hasNeighbourInAnyDirection ) { // Add to search map //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx); //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx); //cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx)); return cvf::StructGridInterface::NO_FACE; } } #if 0 // Possibly do some testing to avoid unneccesary overlap calculations cvf::Vec3d normal; for ( char fIdx = 0; fIdx < 6; ++fIdx ) { if ( isPossibleNeighborInDirection[fIdx] ) { cvf::Vec3d fc1 = c1.faceCenter((cvf::StructGridInterface::FaceType)(fIdx)); cvf::Vec3d fc2 = c2.faceCenter(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx))); cvf::Vec3d fc1ToFc2 = fc2 - fc1; normal = c1.faceNormalWithAreaLenght((cvf::StructGridInterface::FaceType)(fIdx)); normal.normalize(); // Check that face centers are approx in the face plane if ( normal.dot(fc1ToFc2) < 0.01*fc1ToFc2.length() ) { } } } #endif for ( unsigned char fIdx = 0; fIdx < 6; ++fIdx ) { if ( !isPossibleNeighborInDirection[fIdx] ) { continue; } // Calculate connection polygon std::vector<size_t> polygon; std::vector<cvf::Vec3d> intersections; caf::SizeTArray4 face1; caf::SizeTArray4 face2; c1.faceIndices((cvf::StructGridInterface::FaceType)(fIdx), &face1); c2.faceIndices(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)), &face2); bool foundOverlap = cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon, &intersections, (cvf::EdgeIntersectStorage<size_t>*)nullptr, cvf::wrapArrayConst(&mainGrid.nodes()), face1.data(), face2.data(), 1e-6); if ( foundOverlap ) { if (connectionPolygon)(*connectionPolygon) = polygon; if (connectionIntersections) (*connectionIntersections) = intersections; return (cvf::StructGridInterface::FaceType)(fIdx); } } return cvf::StructGridInterface::NO_FACE; }
//-------------------------------------------------------------------------------------------------- /// Read geometry from file given by name into given reservoir object //-------------------------------------------------------------------------------------------------- bool RifReaderEclipseOutput::transferGeometry(const ecl_grid_type* mainEclGrid, RigReservoir* reservoir) { CVF_ASSERT(reservoir); if (!mainEclGrid) { // Some error return false; } RigMainGrid* mainGrid = reservoir->mainGrid(); { cvf::Vec3st gridPointDim(0,0,0); gridPointDim.x() = ecl_grid_get_nx(mainEclGrid) + 1; gridPointDim.y() = ecl_grid_get_ny(mainEclGrid) + 1; gridPointDim.z() = ecl_grid_get_nz(mainEclGrid) + 1; mainGrid->setGridPointDimensions(gridPointDim); } // Get and set grid and lgr metadata size_t totalCellCount = static_cast<size_t>(ecl_grid_get_global_size(mainEclGrid)); int numLGRs = ecl_grid_get_num_lgr(mainEclGrid); int lgrIdx; for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx) { ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx); std::string lgrName = ecl_grid_get_name(localEclGrid); cvf::Vec3st gridPointDim(0,0,0); gridPointDim.x() = ecl_grid_get_nx(localEclGrid) + 1; gridPointDim.y() = ecl_grid_get_ny(localEclGrid) + 1; gridPointDim.z() = ecl_grid_get_nz(localEclGrid) + 1; RigLocalGrid* localGrid = new RigLocalGrid(mainGrid); mainGrid->addLocalGrid(localGrid); localGrid->setIndexToStartOfCells(totalCellCount); localGrid->setGridName(lgrName); localGrid->setGridPointDimensions(gridPointDim); totalCellCount += ecl_grid_get_global_size(localEclGrid); } // Reserve room for the cells and nodes and fill them with data mainGrid->cells().reserve(totalCellCount); mainGrid->nodes().reserve(8*totalCellCount); caf::ProgressInfo progInfo(3 + numLGRs, ""); progInfo.setProgressDescription("Main Grid"); progInfo.setNextProgressIncrement(3); transferGridCellData(mainGrid, mainGrid, mainEclGrid, 0, 0); progInfo.setProgress(3); size_t globalMatrixActiveSize = ecl_grid_get_nactive(mainEclGrid); size_t globalFractureActiveSize = ecl_grid_get_nactive_fracture(mainEclGrid); mainGrid->setMatrixModelActiveCellCount(globalMatrixActiveSize); mainGrid->setFractureModelActiveCellCount(globalFractureActiveSize); for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx) { progInfo.setProgressDescription("LGR number " + QString::number(lgrIdx+1)); ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx); RigLocalGrid* localGrid = static_cast<RigLocalGrid*>(mainGrid->gridByIndex(lgrIdx+1)); transferGridCellData(mainGrid, localGrid, localEclGrid, globalMatrixActiveSize, globalFractureActiveSize); int activeCellCount = ecl_grid_get_nactive(localEclGrid); localGrid->setMatrixModelActiveCellCount(activeCellCount); globalMatrixActiveSize += activeCellCount; activeCellCount = ecl_grid_get_nactive_fracture(localEclGrid); localGrid->setFractureModelActiveCellCount(activeCellCount); globalFractureActiveSize += activeCellCount; progInfo.setProgress(3 + lgrIdx); } mainGrid->setGlobalMatrixModelActiveCellCount(globalMatrixActiveSize); mainGrid->setGlobalFractureModelActiveCellCount(globalFractureActiveSize); return true; }
//-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigNNCData::processConnections(const RigMainGrid& mainGrid) { //cvf::Trace::show("NNC: Total number: " + cvf::String((int)m_connections.size())); for (size_t cnIdx = 0; cnIdx < m_connections.size(); ++cnIdx) { const RigCell& c1 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c1GlobIdx]; const RigCell& c2 = mainGrid.globalCellArray()[m_connections[cnIdx].m_c2GlobIdx]; // Try to find the shared face char hasNeighbourInAnyDirection = 0; bool isPossibleNeighborInDirection[6]= {true, true, true, true, true, true}; if (c1.hostGrid() == c2.hostGrid()) { size_t i1, j1, k1; c1.hostGrid()->ijkFromCellIndex(c1.gridLocalCellIndex(), &i1, &j1, &k1); size_t i2, j2, k2; c2.hostGrid()->ijkFromCellIndex(c2.gridLocalCellIndex(), &i2, &j2, &k2); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ((i1 + 1) == i2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ((i2 + 1) == i1); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ((j1 + 1) == j2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ((j2 + 1) == j1); isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ((k1 + 1) == k2); isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ((k2 + 1) == k1); hasNeighbourInAnyDirection = isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] + isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] + isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] + isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K]; // If cell 2 is not adjancent with respect to any of the six ijk directions, // assume that we have no overlapping area. if (!hasNeighbourInAnyDirection) { // Add to search map //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx); //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx); //cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx)); continue; // to next connection } } // Possibly do some testing to avoid unneccesary overlap calculations cvf::Vec3d normal; for (char fIdx = 0; fIdx < 6; ++fIdx) { if (isPossibleNeighborInDirection[fIdx]) { cvf::Vec3d fc1 = c1.faceCenter((cvf::StructGridInterface::FaceType)(fIdx)); cvf::Vec3d fc2 = c2.faceCenter(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx))); cvf::Vec3d fc1ToFc2 = fc2 - fc1; normal = c1.faceNormalWithAreaLenght((cvf::StructGridInterface::FaceType)(fIdx)); normal.normalize(); // Check that face centers are approx in the face plane if (normal.dot(fc1ToFc2) < 0.01*fc1ToFc2.length()) { } } } bool foundAnyOverlap = false; for (char fIdx = 0; fIdx < 6; ++fIdx) { if (!isPossibleNeighborInDirection[fIdx]) { continue; } // Calculate connection polygon std::vector<size_t> polygon; std::vector<cvf::Vec3d> intersections; caf::SizeTArray4 face1; caf::SizeTArray4 face2; c1.faceIndices((cvf::StructGridInterface::FaceType)(fIdx), &face1); c2.faceIndices(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)), &face2); bool foundOverlap = cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon, &intersections, (cvf::EdgeIntersectStorage<size_t>*)NULL, cvf::wrapArrayConst(&mainGrid.nodes()), face1.data(), face2.data(), 1e-6); if (foundOverlap) { foundAnyOverlap = true; // Found an overlap polygon. Store data about connection m_connections[cnIdx].m_c1Face = (cvf::StructGridInterface::FaceType)fIdx; for (size_t pIdx = 0; pIdx < polygon.size(); ++pIdx) { if (polygon[pIdx] < mainGrid.nodes().size()) m_connections[cnIdx].m_polygon.push_back(mainGrid.nodes()[polygon[pIdx]]); else m_connections[cnIdx].m_polygon.push_back(intersections[polygon[pIdx] - mainGrid.nodes().size()]); } // Add to search map, possibly not needed //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][fIdx].push_back(cnIdx); //m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx))].push_back(cnIdx); break; // The connection face is found. Stop looping over the cell faces. Jump to next connection } } if (!foundAnyOverlap) { //cvf::Trace::show("NNC: No overlap found for : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) + "C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx)); } } }