virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream) { RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args); QString propertyName = args[2]; QString porosityModelName = args[3]; RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS; if (porosityModelName == "Fracture") { porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS; } // Find the requested data size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T; std::vector< std::vector<double> >* scalarResultFrames = NULL; if (rimCase && rimCase->results(porosityModelEnum)) { scalarResultIndex = rimCase->results(porosityModelEnum)->findOrLoadScalarResult(propertyName); if (scalarResultIndex != cvf::UNDEFINED_SIZE_T) { scalarResultFrames = &(rimCase->results(porosityModelEnum)->cellResults()->cellScalarResults(scalarResultIndex)); } } if (scalarResultFrames == NULL) { server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: \n") + RiaSocketServer::tr("Could not find the %1 model property named: \"%2\"").arg(porosityModelName).arg(propertyName)); } // Write data back : timeStepCount, bytesPrTimestep, dataForTimestep0 ... dataForTimestepN if ( scalarResultFrames == NULL) { // No data available socketStream << (quint64)0 << (quint64)0 ; } else { // Create a list of all the requested timesteps std::vector<size_t> requestedTimesteps; if (args.size() <= 4) { // Select all for (size_t tsIdx = 0; tsIdx < scalarResultFrames->size(); ++tsIdx) { requestedTimesteps.push_back(tsIdx); } } else { bool timeStepReadError = false; for (int argIdx = 4; argIdx < args.size(); ++argIdx) { bool conversionOk = false; int tsIdx = args[argIdx].toInt(&conversionOk); if (conversionOk) { requestedTimesteps.push_back(tsIdx); } else { timeStepReadError = true; } } if (timeStepReadError) { server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: riGetActiveCellProperty : \n") + RiaSocketServer::tr("An error occured while interpreting the requested timesteps.")); } } // First write timestep count quint64 timestepCount = (quint64)requestedTimesteps.size(); socketStream << timestepCount; // then the byte-size of the result values in one timestep const RigActiveCellInfo* activeInfo = rimCase->reservoirData()->activeCellInfo(porosityModelEnum); size_t timestepResultCount = activeInfo->globalActiveCellCount(); quint64 timestepByteCount = (quint64)(timestepResultCount*sizeof(double)); socketStream << timestepByteCount ; // Then write the data. size_t globalCellCount = activeInfo->globalCellCount(); for (size_t tIdx = 0; tIdx < requestedTimesteps.size(); ++tIdx) { for (size_t gcIdx = 0; gcIdx < globalCellCount; ++gcIdx) { size_t resultIdx = activeInfo->cellResultIndex(gcIdx); if (resultIdx != cvf::UNDEFINED_SIZE_T) { if (resultIdx < scalarResultFrames->at(requestedTimesteps[tIdx]).size()) { socketStream << scalarResultFrames->at(requestedTimesteps[tIdx])[resultIdx]; } else { socketStream << HUGE_VAL; } } } } #if 0 // This aproach is faster but does not handle coarsening size_t timestepResultCount = scalarResultFrames->front().size(); quint64 timestepByteCount = (quint64)(timestepResultCount*sizeof(double)); socketStream << timestepByteCount ; // Then write the data. for (size_t tIdx = 0; tIdx < requestedTimesteps.size(); ++tIdx) { #if 1 // Write data as raw bytes, fast but does not handle byteswapping server->currentClient()->write((const char *)scalarResultFrames->at(requestedTimesteps[tIdx]).data(), timestepByteCount); // Raw print of data. Fast but no platform conversion #else // Write data using QDataStream, does byteswapping for us. Must use QDataStream on client as well for (size_t cIdx = 0; cIdx < scalarResultFrames->at(requestedTimesteps[tIdx]).size(); ++cIdx) { socketStream << scalarResultFrames->at(tIdx)[cIdx]; } #endif } #endif } return true; }
virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream) { RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args); QString propertyName = args[2]; QString porosityModelName = args[3]; if (porosityModelName == "Fracture") { m_porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS; } // Find the requested data, Or create a set if we are setting data and it is not found size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T; std::vector< std::vector<double> >* scalarResultFrames = NULL; if (rimCase && rimCase->results(m_porosityModelEnum)) { scalarResultIndex = rimCase->results(m_porosityModelEnum)->findOrLoadScalarResult(RimDefines::GENERATED, propertyName); if (scalarResultIndex == cvf::UNDEFINED_SIZE_T) { scalarResultIndex = rimCase->results(m_porosityModelEnum)->cellResults()->addEmptyScalarResult(RimDefines::GENERATED, propertyName, true); } if (scalarResultIndex != cvf::UNDEFINED_SIZE_T) { scalarResultFrames = &(rimCase->results(m_porosityModelEnum)->cellResults()->cellScalarResults(scalarResultIndex)); m_currentScalarIndex = scalarResultIndex; m_currentPropertyName = propertyName; } } if (scalarResultFrames == NULL) { server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: \n") + RiaSocketServer::tr("Could not find the %1 model property named: \"%2\"").arg(porosityModelName).arg(propertyName)); return true; } // If we have not read the header and there are data enough: Read it. // Do nothing if we have not enough data if (m_timeStepCountToRead == 0 || m_bytesPerTimeStepToRead == 0) { if (server->currentClient()->bytesAvailable() < (int)sizeof(quint64)*2) return true; socketStream >> m_timeStepCountToRead; socketStream >> m_bytesPerTimeStepToRead; } // std::cout << "RiaSetActiveCellProperty: " << propertyName.data() << " timeStepCount " << m_timeStepCountToRead << " bytesPerTimeStep " << m_bytesPerTimeStepToRead; // Create a list of all the requested timesteps m_requestedTimesteps.clear(); if (args.size() <= 4) { // Select all for (size_t tsIdx = 0; tsIdx < m_timeStepCountToRead; ++tsIdx) { m_requestedTimesteps.push_back(tsIdx); } } else { bool timeStepReadError = false; for (int argIdx = 4; argIdx < args.size(); ++argIdx) { bool conversionOk = false; int tsIdx = args[argIdx].toInt(&conversionOk); if (conversionOk) { m_requestedTimesteps.push_back(tsIdx); } else { timeStepReadError = true; } } if (timeStepReadError) { server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: riGetActiveCellProperty : \n") + RiaSocketServer::tr("An error occured while interpreting the requested timesteps.")); } } if (! m_requestedTimesteps.size()) { server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: \n") + RiaSocketServer::tr("No time steps specified").arg(porosityModelName).arg(propertyName)); return true; } // Resize the result container to be able to receive timesteps at the specified timestep idices std::vector<size_t>::iterator maxTimeStepIt = std::max_element(m_requestedTimesteps.begin(), m_requestedTimesteps.end()); CVF_ASSERT(maxTimeStepIt != m_requestedTimesteps.end()); size_t maxTimeStepIdx = (*maxTimeStepIt); if (scalarResultFrames->size() <= maxTimeStepIdx) { scalarResultFrames->resize(maxTimeStepIdx+1); } m_currentReservoir = rimCase; m_scalarResultsToAdd = scalarResultFrames; if (server->currentClient()->bytesAvailable()) { return this->interpretMore(server, server->currentClient()); } return false; }