RippleAddress getSeedFromRPC (Json::Value const& params) { // This function is only called when `key_type` is present. assert (params.isMember (jss::key_type)); bool const has_passphrase = params.isMember (jss::passphrase); bool const has_seed = params.isMember (jss::seed); bool const has_seed_hex = params.isMember (jss::seed_hex); int const n_secrets = has_passphrase + has_seed + has_seed_hex; if (n_secrets > 1) { // `passphrase`, `seed`, and `seed_hex` are mutually exclusive. return RippleAddress(); } RippleAddress result; if (has_seed) { std::string const seed = params[jss::seed].asString(); result.setSeed (seed); } else if (has_seed_hex) { uint128 seed; std::string const seed_hex = params[jss::seed_hex].asString(); if (seed_hex.size() != 32 || !seed.SetHex (seed_hex, true)) { return RippleAddress(); } result.setSeed (seed); } else if (has_passphrase) { std::string const passphrase = params[jss::passphrase].asString(); // Given `key_type`, `passphrase` is always the passphrase. uint128 const seed = PassPhraseToKey (passphrase); result.setSeed (seed); } return result; }
void run () { uint128 seed1, seed2; seed1.SetHex ("71ED064155FFADFA38782C5E0158CB26"); seed2.SetHex ("CF0C3BE4485961858C4198515AE5B965"); CKey root1 (seed1), root2 (seed2); uint256 priv1, priv2; root1.GetPrivateKeyU (priv1); root2.GetPrivateKeyU (priv2); unexpected (to_string (priv1) != "7CFBA64F771E93E817E15039215430B53F7401C34931D111EAB3510B22DBB0D8", "Incorrect private key for generator"); unexpected (to_string (priv2) != "98BC2EACB26EB021D1A6293C044D88BA2F0B6729A2772DEEBF2E21A263C1740B", "Incorrect private key for generator"); RippleAddress nSeed; nSeed.setSeed (seed1); unexpected (nSeed.humanSeed () != "shHM53KPZ87Gwdqarm1bAmPeXg8Tn", "Incorrect human seed"); unexpected (nSeed.humanSeed1751 () != "MAD BODY ACE MINT OKAY HUB WHAT DATA SACK FLAT DANA MATH", "Incorrect 1751 seed"); }
std::string getAccountSecretFromSeed(const std::string& seed) { RippleAddress addr; uint128 seed128; seed128.SetHex(seed); addr.setSeed(seed128); return addr.humanSeed(); }
void rippleGenerateAddress(std::string& address, std::string& secret) { RippleAddress naSeed; RippleAddress naAccount; uint128 key; getRand(key.begin(), key.size()); naSeed.setSeed(key); RippleAddress naGenerator = createGeneratorPublic(naSeed); naAccount.setAccountPublic(naGenerator.getAccountPublic(), 0); secret = naSeed.humanSeed(); address = naAccount.humanAccountID(); }
void run() { // Construct a seed. RippleAddress naSeed; expect (naSeed.setSeedGeneric ("masterpassphrase")); expect (naSeed.humanSeed () == "snoPBrXtMeMyMHUVTgbuqAfg1SUTb", naSeed.humanSeed ()); // Create node public/private key pair RippleAddress naNodePublic = RippleAddress::createNodePublic (naSeed); RippleAddress naNodePrivate = RippleAddress::createNodePrivate (naSeed); expect (naNodePublic.humanNodePublic () == "n94a1u4jAz288pZLtw6yFWVbi89YamiC6JBXPVUj5zmExe5fTVg9", naNodePublic.humanNodePublic ()); expect (naNodePrivate.humanNodePrivate () == "pnen77YEeUd4fFKG7iycBWcwKpTaeFRkW2WFostaATy1DSupwXe", naNodePrivate.humanNodePrivate ()); // Check node signing. Blob vucTextSrc = strCopy ("Hello, nurse!"); uint256 uHash = Serializer::getSHA512Half (vucTextSrc); Blob vucTextSig; naNodePrivate.signNodePrivate (uHash, vucTextSig); expect (naNodePublic.verifyNodePublic (uHash, vucTextSig, ECDSA::strict), "Verify failed."); // Construct a public generator from the seed. RippleAddress generator = RippleAddress::createGeneratorPublic (naSeed); expect (generator.humanGenerator () == "fhuJKrhSDzV2SkjLn9qbwm5AaRmrxDPfFsHDCP6yfDZWcxDFz4mt", generator.humanGenerator ()); // Create account #0 public/private key pair. RippleAddress naAccountPublic0 = RippleAddress::createAccountPublic (generator, 0); RippleAddress naAccountPrivate0 = RippleAddress::createAccountPrivate (generator, naSeed, 0); expect (naAccountPublic0.humanAccountID () == "rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh", naAccountPublic0.humanAccountID ()); expect (naAccountPublic0.humanAccountPublic () == "aBQG8RQAzjs1eTKFEAQXr2gS4utcDiEC9wmi7pfUPTi27VCahwgw", naAccountPublic0.humanAccountPublic ()); // Create account #1 public/private key pair. RippleAddress naAccountPublic1 = RippleAddress::createAccountPublic (generator, 1); RippleAddress naAccountPrivate1 = RippleAddress::createAccountPrivate (generator, naSeed, 1); expect (naAccountPublic1.humanAccountID () == "r4bYF7SLUMD7QgSLLpgJx38WJSY12ViRjP", naAccountPublic1.humanAccountID ()); expect (naAccountPublic1.humanAccountPublic () == "aBPXpTfuLy1Bhk3HnGTTAqnovpKWQ23NpFMNkAF6F1Atg5vDyPrw", naAccountPublic1.humanAccountPublic ()); // Check account signing. expect (naAccountPrivate0.accountPrivateSign (uHash, vucTextSig), "Signing failed."); expect (naAccountPublic0.accountPublicVerify (uHash, vucTextSig, ECDSA::strict), "Verify failed."); expect (!naAccountPublic1.accountPublicVerify (uHash, vucTextSig, ECDSA::not_strict), "Anti-verify failed."); expect (!naAccountPublic1.accountPublicVerify (uHash, vucTextSig, ECDSA::strict), "Anti-verify failed."); expect (naAccountPrivate1.accountPrivateSign (uHash, vucTextSig), "Signing failed."); expect (naAccountPublic1.accountPublicVerify (uHash, vucTextSig, ECDSA::strict), "Verify failed."); expect (!naAccountPublic0.accountPublicVerify (uHash, vucTextSig, ECDSA::not_strict), "Anti-verify failed."); expect (!naAccountPublic0.accountPublicVerify (uHash, vucTextSig, ECDSA::strict), "Anti-verify failed."); // Check account encryption. Blob vucTextCipher = naAccountPrivate0.accountPrivateEncrypt (naAccountPublic1, vucTextSrc); Blob vucTextRecovered = naAccountPrivate1.accountPrivateDecrypt (naAccountPublic0, vucTextCipher); expect (vucTextSrc == vucTextRecovered, "Encrypt-decrypt failed."); { RippleAddress nSeed; uint128 seed1, seed2; seed1.SetHex ("71ED064155FFADFA38782C5E0158CB26"); nSeed.setSeed (seed1); expect (nSeed.humanSeed() == "shHM53KPZ87Gwdqarm1bAmPeXg8Tn", "Incorrect human seed"); expect (nSeed.humanSeed1751() == "MAD BODY ACE MINT OKAY HUB WHAT DATA SACK FLAT DANA MATH", "Incorrect 1751 seed"); } }
void LoopThread(unsigned int n, uint64_t eta50, string* ppattern, string* pmaster_seed, string* pmaster_seed_hex, string* paccount_id) { RippleAddress naSeed; RippleAddress naAccount; string pattern = *ppattern; string account_id; uint128 key; getRand(key.begin(), key.size()); uint64_t count = 0; uint64_t last_count = 0; do { naSeed.setSeed(key); RippleAddress naGenerator = createGeneratorPublic(naSeed); naAccount.setAccountPublic(naGenerator.getAccountPublic(), 0); account_id = naAccount.humanAccountID(); count++; if (count % UPDATE_ITERATIONS == 0) { boost::unique_lock<boost::mutex> lock(mutex); total_searched += count - last_count; last_count = count; uint64_t nSecs = time(NULL) - start_time; double speed = (1.0 * total_searched)/nSecs; const char* unit = "seconds"; double eta50f = eta50/speed; if (eta50f > 100) { unit = "minutes"; eta50f /= 60; if (eta50f > 100) { unit = "hours"; eta50f /= 60; if (eta50f > 48) { unit = "days"; eta50f /= 24; } } } cout << "# Thread " << n << ": " << count << " seeds." << endl << "#" << endl << "# Total Speed: " << speed << " seeds/second" << endl << "# Total Searched: " << total_searched << endl << "# Total Time: " << nSecs << " seconds" << endl << "# ETA 50%: " << eta50f << " " << unit << endl << "# Last: " << account_id << endl << "# Pattern: " << pattern << endl << "#" << endl; } key++; boost::this_thread::yield(); } while ((account_id.substr(0, pattern.size()) != pattern) && !fDone); boost::unique_lock<boost::mutex> lock(mutex); if (fDone) return; fDone = true; cout << "# *** Found by thread " << n << ". ***" << endl << "#" << endl; *pmaster_seed = naSeed.humanSeed(); *pmaster_seed_hex = naSeed.getSeed().ToString(); *paccount_id = account_id; }