コード例 #1
0
void ScheduleDAGLinearize::Schedule() {
  LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");

  SmallVector<SDNode*, 8> Glues;
  unsigned DAGSize = 0;
  for (SDNode &Node : DAG->allnodes()) {
    SDNode *N = &Node;

    // Use node id to record degree.
    unsigned Degree = N->use_size();
    N->setNodeId(Degree);
    unsigned NumVals = N->getNumValues();
    if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
        N->hasAnyUseOfValue(NumVals-1)) {
      SDNode *User = findGluedUser(N);
      if (User) {
        Glues.push_back(N);
        GluedMap.insert(std::make_pair(N, User));
      }
    }

    if (N->isMachineOpcode() ||
        (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
      ++DAGSize;
  }

  for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
    SDNode *Glue = Glues[i];
    SDNode *GUser = GluedMap[Glue];
    unsigned Degree = Glue->getNodeId();
    unsigned UDegree = GUser->getNodeId();

    // Glue user must be scheduled together with the glue operand. So other
    // users of the glue operand must be treated as its users.
    SDNode *ImmGUser = Glue->getGluedUser();
    for (const SDNode *U : Glue->uses())
      if (U == ImmGUser)
        --Degree;
    GUser->setNodeId(UDegree + Degree);
    Glue->setNodeId(1);
  }

  Sequence.reserve(DAGSize);
  ScheduleNode(DAG->getRoot().getNode());
}
コード例 #2
0
void ScheduleDAGSDNodes::AddSchedEdges() {
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();

  // Check to see if the scheduler cares about latencies.
  bool UnitLatencies = forceUnitLatencies();

  // Pass 2: add the preds, succs, etc.
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    SUnit *SU = &SUnits[su];
    SDNode *MainNode = SU->getNode();

    if (MainNode->isMachineOpcode()) {
      unsigned Opc = MainNode->getMachineOpcode();
      const MCInstrDesc &MCID = TII->get(Opc);
      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
          SU->isTwoAddress = true;
          break;
        }
      }
      if (MCID.isCommutable())
        SU->isCommutable = true;
    }

    // Find all predecessors and successors of the group.
    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
      if (N->isMachineOpcode() &&
          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
        SU->hasPhysRegClobbers = true;
        unsigned NumUsed = InstrEmitter::CountResults(N);
        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
          --NumUsed;    // Skip over unused values at the end.
        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
          SU->hasPhysRegDefs = true;
      }

      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
        SDNode *OpN = N->getOperand(i).getNode();
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
        SUnit *OpSU = &SUnits[OpN->getNodeId()];
        assert(OpSU && "Node has no SUnit!");
        if (OpSU == SU) continue;           // In the same group.

        EVT OpVT = N->getOperand(i).getValueType();
        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
        bool isChain = OpVT == MVT::Other;

        unsigned PhysReg = 0;
        int Cost = 1;
        // Determine if this is a physical register dependency.
        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
        assert((PhysReg == 0 || !isChain) &&
               "Chain dependence via physreg data?");
        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
        // emits a copy from the physical register to a virtual register unless
        // it requires a cross class copy (cost < 0). That means we are only
        // treating "expensive to copy" register dependency as physical register
        // dependency. This may change in the future though.
        if (Cost >= 0 && !StressSched)
          PhysReg = 0;

        // If this is a ctrl dep, latency is 1.
        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
        // Special-case TokenFactor chains as zero-latency.
        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
          OpLatency = 0;

        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
                               OpLatency, PhysReg);
        if (!isChain && !UnitLatencies) {
          computeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
        }

        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
          // Multiple register uses are combined in the same SUnit. For example,
          // we could have a set of glued nodes with all their defs consumed by
          // another set of glued nodes. Register pressure tracking sees this as
          // a single use, so to keep pressure balanced we reduce the defs.
          //
          // We can't tell (without more book-keeping) if this results from
          // glued nodes or duplicate operands. As long as we don't reduce
          // NumRegDefsLeft to zero, we handle the common cases well.
          --OpSU->NumRegDefsLeft;
        }
      }
    }
  }
}
コード例 #3
0
void ScheduleDAGSDNodes::AddSchedEdges() {
  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();

  // Check to see if the scheduler cares about latencies.
  bool UnitLatencies = ForceUnitLatencies();

  // Pass 2: add the preds, succs, etc.
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    SUnit *SU = &SUnits[su];
    SDNode *MainNode = SU->getNode();
    
    if (MainNode->isMachineOpcode()) {
      unsigned Opc = MainNode->getMachineOpcode();
      const TargetInstrDesc &TID = TII->get(Opc);
      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
          SU->isTwoAddress = true;
          break;
        }
      }
      if (TID.isCommutable())
        SU->isCommutable = true;
    }
    
    // Find all predecessors and successors of the group.
    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
      if (N->isMachineOpcode() &&
          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
        SU->hasPhysRegClobbers = true;
        unsigned NumUsed = InstrEmitter::CountResults(N);
        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
          --NumUsed;    // Skip over unused values at the end.
        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
          SU->hasPhysRegDefs = true;
      }
      
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
        SDNode *OpN = N->getOperand(i).getNode();
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
        SUnit *OpSU = &SUnits[OpN->getNodeId()];
        assert(OpSU && "Node has no SUnit!");
        if (OpSU == SU) continue;           // In the same group.

        EVT OpVT = N->getOperand(i).getValueType();
        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
        bool isChain = OpVT == MVT::Other;

        unsigned PhysReg = 0;
        int Cost = 1;
        // Determine if this is a physical register dependency.
        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
        assert((PhysReg == 0 || !isChain) &&
               "Chain dependence via physreg data?");
        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
        // emits a copy from the physical register to a virtual register unless
        // it requires a cross class copy (cost < 0). That means we are only
        // treating "expensive to copy" register dependency as physical register
        // dependency. This may change in the future though.
        if (Cost >= 0)
          PhysReg = 0;

        // If this is a ctrl dep, latency is 1.
        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
                               OpLatency, PhysReg);
        if (!isChain && !UnitLatencies) {
          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
        }

        SU->addPred(dep);
      }
    }
  }
}