void testVectorType(const VectorType& base) { typedef typename internal::traits<VectorType>::Index Index; typedef typename internal::traits<VectorType>::Scalar Scalar; const Index size = base.size(); Scalar high = internal::random<Scalar>(-500,500); Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500)); if (low>high) std::swap(low,high); const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1)); // check whether the result yields what we expect it to do VectorType m(base); m.setLinSpaced(size,low,high); VectorType n(size); for (int i=0; i<size; ++i) n(i) = low+i*step; VERIFY_IS_APPROX(m,n); // random access version m = VectorType::LinSpaced(size,low,high); VERIFY_IS_APPROX(m,n); // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<Scalar>::epsilon() ); // These guys sometimes fail! This is not good. Any ideas how to fix them!? //VERIFY( m(m.size()-1) == high ); //VERIFY( m(0) == low ); // sequential access version m = VectorType::LinSpaced(Sequential,size,low,high); VERIFY_IS_APPROX(m,n); // These guys sometimes fail! This is not good. Any ideas how to fix them!? //VERIFY( m(m.size()-1) == high ); //VERIFY( m(0) == low ); // check whether everything works with row and col major vectors Matrix<Scalar,Dynamic,1> row_vector(size); Matrix<Scalar,1,Dynamic> col_vector(size); row_vector.setLinSpaced(size,low,high); col_vector.setLinSpaced(size,low,high); VERIFY( row_vector.isApprox(col_vector.transpose(), NumTraits<Scalar>::epsilon())); Matrix<Scalar,Dynamic,1> size_changer(size+50); size_changer.setLinSpaced(size,low,high); VERIFY( size_changer.size() == size ); typedef Matrix<Scalar,1,1> ScalarMatrix; ScalarMatrix scalar; scalar.setLinSpaced(1,low,high); VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) ); VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) ); }
void testVectorType(const VectorType& base) { typedef typename VectorType::Scalar Scalar; const Index size = base.size(); Scalar high = internal::random<Scalar>(-500,500); Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500)); if (low>high) std::swap(low,high); const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1)); // check whether the result yields what we expect it to do VectorType m(base); m.setLinSpaced(size,low,high); if(!NumTraits<Scalar>::IsInteger) { VectorType n(size); for (int i=0; i<size; ++i) n(i) = low+i*step; VERIFY_IS_APPROX(m,n); } VectorType n(size); for (int i=0; i<size; ++i) n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/(size-1)); VERIFY_IS_APPROX(m,n); // random access version m = VectorType::LinSpaced(size,low,high); VERIFY_IS_APPROX(m,n); VERIFY( internal::isApprox(m(m.size()-1),high) ); VERIFY( size==1 || internal::isApprox(m(0),low) ); // sequential access version m = VectorType::LinSpaced(Sequential,size,low,high); VERIFY_IS_APPROX(m,n); VERIFY( internal::isApprox(m(m.size()-1),high) ); VERIFY( size==1 || internal::isApprox(m(0),low) ); // check whether everything works with row and col major vectors Matrix<Scalar,Dynamic,1> row_vector(size); Matrix<Scalar,1,Dynamic> col_vector(size); row_vector.setLinSpaced(size,low,high); col_vector.setLinSpaced(size,low,high); // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit // when computing the squared sum in isApprox, thus the 2x factor. VERIFY( row_vector.isApprox(col_vector.transpose(), Scalar(2)*NumTraits<Scalar>::epsilon())); Matrix<Scalar,Dynamic,1> size_changer(size+50); size_changer.setLinSpaced(size,low,high); VERIFY( size_changer.size() == size ); typedef Matrix<Scalar,1,1> ScalarMatrix; ScalarMatrix scalar; scalar.setLinSpaced(1,low,high); VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) ); VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) ); // regression test for bug 526 (linear vectorized transversal) if (size > 1) { m.tail(size-1).setLinSpaced(low, high); VERIFY_IS_APPROX(m(size-1), high); } }