bool UsdRelationship::SetTargets(const SdfPathVector& targets) const { SdfPathVector mappedPaths; mappedPaths.reserve(targets.size()); for (const SdfPath &target: targets) { std::string errMsg; mappedPaths.push_back(_GetTargetForAuthoring(target, &errMsg)); if (mappedPaths.back().IsEmpty()) { TF_CODING_ERROR("Cannot set target <%s> on relationship <%s>: %s", target.GetText(), GetPath().GetText(), errMsg.c_str()); return false; } } // NOTE! Do not insert any code that modifies scene description between the // changeblock and the call to _CreateSpec! Explanation: _CreateSpec calls // code that inspects the composition graph and then does some authoring. // We want that authoring to be inside the change block, but if any scene // description changes are made after the block is created but before we // call _CreateSpec, the composition structure may be invalidated. SdfChangeBlock block; SdfRelationshipSpecHandle relSpec = _CreateSpec(); if (!relSpec) return false; relSpec->GetTargetPathList().ClearEditsAndMakeExplicit(); for (const SdfPath &path: mappedPaths) { relSpec->GetTargetPathList().Add(path); } return true; }
bool UsdRelationship::SetTargets(const SdfPathVector& targets) const { SdfPathVector mappedPaths; mappedPaths.reserve(targets.size()); BOOST_FOREACH(const SdfPath &target, targets) { std::string errMsg; mappedPaths.push_back(_GetTargetForAuthoring(target, &errMsg)); if (mappedPaths.back().IsEmpty()) { TF_CODING_ERROR("Cannot set target <%s> on relationship <%s>: %s", target.GetText(), GetPath().GetText(), errMsg.c_str()); return false; } }
SdfPathVector Sdf_MarkerUtils<Spec>::GetMarkerPaths(const Spec& owner) { SdfPathVector paths; const SdfLayerHandle layer = owner.GetLayer(); const SdfPathVector children = owner.template GetFieldAs<SdfPathVector>( _MarkerPolicy::GetChildFieldKey()); TF_FOR_ALL(path, children) { const SdfPath targetSpecPath = owner.GetPath().AppendTarget(*path); if (layer->HasField(targetSpecPath, SdfFieldKeys->Marker)) { paths.push_back(*path); } } return paths; }
bool UsdGeomPrimvar::SetIdTarget( const SdfPath& path) const { if (_idTargetRelName.IsEmpty()) { TF_CODING_ERROR("Can only set ID Target for string or string[] typed" " primvars (primvar type is '%s')", _attr.GetTypeName().GetAsToken().GetText()); return false; } if (UsdRelationship rel = _GetIdTargetRel(true)) { SdfPathVector targets; targets.push_back(path.IsEmpty() ? _attr.GetPrimPath() : path); return rel.SetTargets(targets); } return false; }
void PxrUsdKatanaReadPointInstancer( const UsdGeomPointInstancer& instancer, const PxrUsdKatanaUsdInPrivateData& data, PxrUsdKatanaAttrMap& instancerAttrMap, PxrUsdKatanaAttrMap& sourcesAttrMap, PxrUsdKatanaAttrMap& instancesAttrMap, PxrUsdKatanaAttrMap& inputAttrMap) { const double currentTime = data.GetCurrentTime(); PxrUsdKatanaReadXformable(instancer, data, instancerAttrMap); // Get primvars for setting later. Unfortunatley, the only way to get them // out of the attr map is to build it, which will cause its contents to be // cleared. We'll need to restore its contents before continuing. // FnKat::GroupAttribute instancerAttrs = instancerAttrMap.build(); FnKat::GroupAttribute primvarAttrs = instancerAttrs.getChildByName("geometry.arbitrary"); for (int64_t i = 0; i < instancerAttrs.getNumberOfChildren(); ++i) { instancerAttrMap.set(instancerAttrs.getChildName(i), instancerAttrs.getChildByIndex(i)); } instancerAttrMap.set("type", FnKat::StringAttribute("usd point instancer")); const std::string fileName = data.GetUsdInArgs()->GetFileName(); instancerAttrMap.set("info.usd.fileName", FnKat::StringAttribute(fileName)); FnKat::GroupAttribute inputAttrs = inputAttrMap.build(); const std::string katOutputPath = FnKat::StringAttribute( inputAttrs.getChildByName("outputLocationPath")).getValue("", false); if (katOutputPath.empty()) { _LogAndSetError(instancerAttrMap, "No output location path specified"); return; } // // Validate instancer data. // const std::string instancerPath = instancer.GetPath().GetString(); UsdStageWeakPtr stage = instancer.GetPrim().GetStage(); // Prototypes (required) // SdfPathVector protoPaths; instancer.GetPrototypesRel().GetTargets(&protoPaths); if (protoPaths.empty()) { _LogAndSetError(instancerAttrMap, "Instancer has no prototypes"); return; } _PathToPrimMap primCache; for (auto protoPath : protoPaths) { const UsdPrim &protoPrim = stage->GetPrimAtPath(protoPath); primCache[protoPath] = protoPrim; } // Indices (required) // VtIntArray protoIndices; if (!instancer.GetProtoIndicesAttr().Get(&protoIndices, currentTime)) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } const size_t numInstances = protoIndices.size(); if (numInstances == 0) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } for (auto protoIndex : protoIndices) { if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { _LogAndSetError(instancerAttrMap, TfStringPrintf( "Out of range prototype index %d", protoIndex)); return; } } // Mask (optional) // std::vector<bool> pruneMaskValues = instancer.ComputeMaskAtTime(currentTime); if (!pruneMaskValues.empty() and pruneMaskValues.size() != numInstances) { _LogAndSetError(instancerAttrMap, "Mismatch in length of indices and mask"); return; } // Positions (required) // UsdAttribute positionsAttr = instancer.GetPositionsAttr(); if (!positionsAttr.HasValue()) { _LogAndSetError(instancerAttrMap, "Instancer has no positions"); return; } // // Compute instance transform matrices. // const double timeCodesPerSecond = stage->GetTimeCodesPerSecond(); // Gather frame-relative sample times and add them to the current time to // generate absolute sample times. // const std::vector<double> &motionSampleTimes = data.GetMotionSampleTimes(positionsAttr); const size_t sampleCount = motionSampleTimes.size(); std::vector<UsdTimeCode> sampleTimes(sampleCount); for (size_t a = 0; a < sampleCount; ++a) { sampleTimes[a] = UsdTimeCode(currentTime + motionSampleTimes[a]); } // Get velocityScale from the opArgs. // float velocityScale = FnKat::FloatAttribute( inputAttrs.getChildByName("opArgs.velocityScale")).getValue(1.0f, false); // XXX Replace with UsdGeomPointInstancer::ComputeInstanceTransformsAtTime. // std::vector<std::vector<GfMatrix4d>> xformSamples(sampleCount); const size_t numXformSamples = _ComputeInstanceTransformsAtTime(xformSamples, instancer, sampleTimes, UsdTimeCode(currentTime), timeCodesPerSecond, numInstances, positionsAttr, velocityScale); if (numXformSamples == 0) { _LogAndSetError(instancerAttrMap, "Could not compute " "sample/topology-invarying instance " "transform matrix"); return; } // // Compute prototype bounds. // bool aggregateBoundsValid = false; std::vector<double> aggregateBounds; // XXX Replace with UsdGeomPointInstancer::ComputeExtentAtTime. // VtVec3fArray aggregateExtent; if (_ComputeExtentAtTime( aggregateExtent, data.GetUsdInArgs(), xformSamples, motionSampleTimes, protoIndices, protoPaths, primCache, pruneMaskValues)) { aggregateBoundsValid = true; aggregateBounds.resize(6); aggregateBounds[0] = aggregateExtent[0][0]; // min x aggregateBounds[1] = aggregateExtent[1][0]; // max x aggregateBounds[2] = aggregateExtent[0][1]; // min y aggregateBounds[3] = aggregateExtent[1][1]; // max y aggregateBounds[4] = aggregateExtent[0][2]; // min z aggregateBounds[5] = aggregateExtent[1][2]; // max z } // // Build sources. Keep track of which instances use them. // FnGeolibServices::StaticSceneCreateOpArgsBuilder sourcesBldr(false); std::vector<int> instanceIndices; instanceIndices.reserve(numInstances); std::vector<std::string> instanceSources; instanceSources.reserve(protoPaths.size()); std::map<std::string, int> instanceSourceIndexMap; std::vector<int> omitList; omitList.reserve(numInstances); std::map<SdfPath, std::string> protoPathsToKatPaths; for (size_t i = 0; i < numInstances; ++i) { int index = protoIndices[i]; // Check to see if we are pruned. // bool isPruned = (!pruneMaskValues.empty() and pruneMaskValues[i] == false); if (isPruned) { omitList.push_back(i); } const SdfPath &protoPath = protoPaths[index]; // Compute the full (Katana) path to this prototype. // std::string fullProtoPath; std::map<SdfPath, std::string>::const_iterator pptkpIt = protoPathsToKatPaths.find(protoPath); if (pptkpIt != protoPathsToKatPaths.end()) { fullProtoPath = pptkpIt->second; } else { _PathToPrimMap::const_iterator pcIt = primCache.find(protoPath); const UsdPrim &protoPrim = pcIt->second; if (!protoPrim) { continue; } // Determine where (what path) to start building the prototype prim // such that its material bindings will be preserved. This could be // the prototype path itself or an ancestor path. // SdfPathVector commonPrefixes; UsdRelationship materialBindingsRel = UsdShadeMaterial::GetBindingRel(protoPrim); auto assetAPI = UsdModelAPI(protoPrim); std::string assetName; bool isReferencedModelPrim = assetAPI.IsModel() and assetAPI.GetAssetName(&assetName); if (!materialBindingsRel or isReferencedModelPrim) { // The prim has no material bindings or is a referenced model // prim (meaning that materials are defined below it); start // building at the prototype path. // commonPrefixes.push_back(protoPath); } else { SdfPathVector materialPaths; materialBindingsRel.GetForwardedTargets(&materialPaths); for (auto materialPath : materialPaths) { const SdfPath &commonPrefix = protoPath.GetCommonPrefix(materialPath); if (commonPrefix.GetString() == "/") { // XXX Unhandled case. // The prototype prim and its material are not under the // same parent; start building at the prototype path // (although it is likely that bindings will be broken). // commonPrefixes.push_back(protoPath); } else { // Start building at the common ancestor between the // prototype prim and its material. // commonPrefixes.push_back(commonPrefix); } } } // XXX Unhandled case. // We'll use the first common ancestor even if there is more than // one (which shouldn't appen if the prototype prim and its bindings // are under the same parent). // SdfPath::RemoveDescendentPaths(&commonPrefixes); const std::string buildPath = commonPrefixes[0].GetString(); // See if the path is a child of the point instancer. If so, we'll // match its hierarchy. If not, we'll put it under a 'prototypes' // group. // std::string relBuildPath; if (pystring::startswith(buildPath, instancerPath + "/")) { relBuildPath = pystring::replace( buildPath, instancerPath + "/", ""); } else { relBuildPath = "prototypes/" + FnGeolibUtil::Path::GetLeafName(buildPath); } // Start generating the full path to the prototype. // fullProtoPath = katOutputPath + "/" + relBuildPath; // Make the common ancestor our instance source. // sourcesBldr.setAttrAtLocation(relBuildPath, "type", FnKat::StringAttribute("instance source")); // Author a tracking attr. // sourcesBldr.setAttrAtLocation(relBuildPath, "info.usd.sourceUsdPath", FnKat::StringAttribute(buildPath)); // Tell the BuildIntermediate op to start building at the common // ancestor. // sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimPath", FnKat::StringAttribute(buildPath)); sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimName", FnKat::StringAttribute("geo")); if (protoPath.GetString() != buildPath) { // Finish generating the full path to the prototype. // fullProtoPath = fullProtoPath + "/geo" + pystring::replace( protoPath.GetString(), buildPath, ""); } // Create a mapping that will link the instance's index to its // prototype's full path. // instanceSourceIndexMap[fullProtoPath] = instanceSources.size(); instanceSources.push_back(fullProtoPath); // Finally, store the full path in the map so we won't have to do // this work again. // protoPathsToKatPaths[protoPath] = fullProtoPath; } instanceIndices.push_back(instanceSourceIndexMap[fullProtoPath]); } // // Build instances. // FnGeolibServices::StaticSceneCreateOpArgsBuilder instancesBldr(false); instancesBldr.createEmptyLocation("instances", "instance array"); instancesBldr.setAttrAtLocation("instances", "geometry.instanceSource", FnKat::StringAttribute(instanceSources, 1)); instancesBldr.setAttrAtLocation("instances", "geometry.instanceIndex", FnKat::IntAttribute(&instanceIndices[0], instanceIndices.size(), 1)); FnKat::DoubleBuilder instanceMatrixBldr(16); for (size_t a = 0; a < numXformSamples; ++a) { double relSampleTime = motionSampleTimes[a]; // Shove samples into the builder at the frame-relative sample time. If // motion is backwards, make sure to reverse time samples. std::vector<double> &matVec = instanceMatrixBldr.get( data.IsMotionBackward() ? PxrUsdKatanaUtils::ReverseTimeSample(relSampleTime) : relSampleTime); matVec.reserve(16 * numInstances); for (size_t i = 0; i < numInstances; ++i) { GfMatrix4d instanceXform = xformSamples[a][i]; const double *matArray = instanceXform.GetArray(); for (int j = 0; j < 16; ++j) { matVec.push_back(matArray[j]); } } } instancesBldr.setAttrAtLocation("instances", "geometry.instanceMatrix", instanceMatrixBldr.build()); if (!omitList.empty()) { instancesBldr.setAttrAtLocation("instances", "geometry.omitList", FnKat::IntAttribute(&omitList[0], omitList.size(), 1)); } instancesBldr.setAttrAtLocation("instances", "geometry.pointInstancerId", FnKat::StringAttribute(katOutputPath)); // // Transfer primvars. // FnKat::GroupBuilder instancerPrimvarsBldr; FnKat::GroupBuilder instancesPrimvarsBldr; for (int64_t i = 0; i < primvarAttrs.getNumberOfChildren(); ++i) { const std::string primvarName = primvarAttrs.getChildName(i); // Use "point" scope for the instancer. instancerPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancerPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("point")); // User "primitive" scope for the instances. instancesPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancesPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("primitive")); } instancerAttrMap.set("geometry.arbitrary", instancerPrimvarsBldr.build()); instancesBldr.setAttrAtLocation("instances", "geometry.arbitrary", instancesPrimvarsBldr.build()); // // Set the final aggregate bounds. // if (aggregateBoundsValid) { instancerAttrMap.set("bound", FnKat::DoubleAttribute(&aggregateBounds[0], 6, 2)); } // // Set proxy attrs. // instancerAttrMap.set("proxies", PxrUsdKatanaUtils::GetViewerProxyAttr(data)); // // Transfer builder results to our attr maps. // FnKat::GroupAttribute sourcesAttrs = sourcesBldr.build(); for (int64_t i = 0; i < sourcesAttrs.getNumberOfChildren(); ++i) { sourcesAttrMap.set( sourcesAttrs.getChildName(i), sourcesAttrs.getChildByIndex(i)); } FnKat::GroupAttribute instancesAttrs = instancesBldr.build(); for (int64_t i = 0; i < instancesAttrs.getNumberOfChildren(); ++i) { instancesAttrMap.set( instancesAttrs.getChildName(i), instancesAttrs.getChildByIndex(i)); } }
SdfPathVector SdfPath::GetConciseRelativePaths(const SdfPathVector& paths) { SdfPathVector primPaths; SdfPathVector anchors; SdfPathVector labels; // initialize the vectors TF_FOR_ALL(iter, paths) { if(!iter->IsAbsolutePath()) { TF_WARN("argument to GetConciseRelativePaths contains a relative path."); return paths; } // first, get the prim paths SdfPath primPath = iter->GetPrimPath(); SdfPath anchor = primPath.GetParentPath(); primPaths.push_back(primPath); anchors.push_back(anchor); // we have to special case root anchors, since MakeRelativePath can't handle them if(anchor == SdfPath::AbsoluteRootPath()) labels.push_back(primPath); else labels.push_back(primPath.MakeRelativePath(anchor)); } // each ambiguous path must be raised to its parent bool ambiguous; do { ambiguous = false; // the next iteration of labels SdfPathVector newAnchors; SdfPathVector newLabels; // find ambiguous labels for(size_t i=0;i<labels.size();++i) { int ok = true; // search for some other path that makes this one ambiguous for(size_t j=0;j<labels.size();++j) { if(i != j && labels[i] == labels[j] && primPaths[i] != primPaths[j]) { ok = false; break; } } if(!ok) { // walk the anchor up one node SdfPath newAnchor = anchors[i].GetParentPath(); newAnchors.push_back(newAnchor); newLabels.push_back( newAnchor == SdfPath::AbsoluteRootPath() ? primPaths[i] : primPaths[i].MakeRelativePath( newAnchor ) ); ambiguous = true; } else { newAnchors.push_back(anchors[i]); newLabels.push_back(labels[i]); } } anchors = newAnchors; labels = newLabels; } while(ambiguous); // generate the final set from the anchors SdfPathVector result; for(size_t i=0; i<anchors.size();++i) { if(anchors[i] == SdfPath::AbsoluteRootPath()) { result.push_back( paths[i] ); } else { result.push_back( paths[i].MakeRelativePath( anchors[i] )); } } return result; }