// Write ByVal Arg to arg registers and stack. static void WriteByValArg(SDValue& ByValChain, SDValue Chain, SDLoc DL, SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass, SmallVector<SDValue, 8>& MemOpChains, int& LastFI, MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, MVT PtrType, bool isLittle) { unsigned LocMemOffset = VA.getLocMemOffset(); unsigned Offset = 0; uint32_t RemainingSize = Flags.getByValSize(); unsigned ByValAlign = Flags.getByValAlign(); if (RemainingSize == 0) return; // Create a fixed object on stack at offset LocMemOffset and copy // remaining part of byval arg to it using memcpy. SDValue Src = DAG.getNode(ISD::ADD, DL, MVT::i32, Arg, DAG.getConstant(Offset, MVT::i32)); LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true); SDValue Dst = DAG.getFrameIndex(LastFI, PtrType); ByValChain = DAG.getMemcpy(ByValChain, DL, Dst, Src, DAG.getConstant(RemainingSize, MVT::i32), std::min(ByValAlign, (unsigned)4), /*isVolatile=*/false, /*AlwaysInline=*/false, MachinePointerInfo(0), MachinePointerInfo(0)); }
//===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// SDValue Cpu0TargetLowering:: LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); Cpu0FunctionInfo *Cpu0FI = MF.getInfo<Cpu0FunctionInfo>(); unsigned SP = Cpu0::SP; assert(getTargetMachine().getFrameLowering()->getStackAlignment() >= cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() && "Cannot lower if the alignment of the allocated space is larger than \ that of the stack."); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); // Get a reference from Cpu0 stack pointer SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy()); // Subtract the dynamic size from the actual stack size to // obtain the new stack size. SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size); // The Sub result contains the new stack start address, so it // must be placed in the stack pointer register. Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue()); // This node always has two return values: a new stack pointer // value and a chain SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other); SDValue Ptr = DAG.getFrameIndex(Cpu0FI->getDynAllocFI(), getPointerTy()); SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) }; return DAG.getNode(Cpu0ISD::DynAlloc, dl, VTLs, Ops, 3); }
SDValue BlackfinTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AllocateStack(12, 4); // ABI requires 12 bytes stack space CCInfo.AnalyzeFormalArguments(Ins, CC_Blackfin); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); TargetRegisterClass *RC = VA.getLocReg() == BF::P0 ? BF::PRegisterClass : BF::DRegisterClass; assert(RC->contains(VA.getLocReg()) && "Unexpected regclass in CCState"); assert(RC->hasType(RegVT) && "Unexpected regclass in CCState"); unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); MF.getRegInfo().addLiveIn(VA.getLocReg(), Reg); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); } else { assert(VA.isMemLoc() && "CCValAssign must be RegLoc or MemLoc"); unsigned ObjSize = VA.getLocVT().getStoreSize(); int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo(), false, false, 0)); } } return Chain; }
SDValue ARCompactTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); ARCompactFunctionInfo *FuncInfo = MF.getInfo<ARCompactFunctionInfo>(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. DebugLoc dl = Op.getDebugLoc(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); }
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); auto *FuncInfo = MF.getInfo<ARCFunctionInfo>(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV)); }
SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); SDLoc DL(Op); SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy(DAG.getDataLayout())); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); }
SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); // Frame index of first vararg argument SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); // Create a store of the frame index to the location operand return DAG.getStore(Op.getOperand(0), Op.getDebugLoc(), FrameIndex, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); }
SDValue MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); int ReturnAddrIndex = FuncInfo->getRAIndex(); if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. uint64_t SlotSize = TD->getPointerSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, true); FuncInfo->setRAIndex(ReturnAddrIndex); } return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); }
/// LowerCall - functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. /// TODO: isVarArg, isTailCall. SDValue MBlazeTargetLowering:: LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // MBlaze does not yet support tail call optimization isTailCall = false; // The MBlaze requires stack slots for arguments passed to var arg // functions even if they are passed in registers. bool needsRegArgSlots = isVarArg; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Variable argument function calls require a minimum of 24-bytes of stack if (isVarArg && NumBytes < 24) NumBytes = 24; Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<SDValue, 8> MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; MVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { // Register can't get to this point... assert(VA.isMemLoc()); // Since we are alread passing values on the stack we don't // need to worry about creating additional slots for the // values passed via registers. needsRegArgSlots = false; // Create the frame index object for this incoming parameter unsigned ArgSize = VA.getValVT().getSizeInBits()/8; unsigned StackLoc = VA.getLocMemOffset() + 4; int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true); SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); // emit ISD::STORE whichs stores the // parameter value to a stack Location MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } } // If we need to reserve stack space for the arguments passed via registers // then create a fixed stack object at the beginning of the stack. if (needsRegArgSlots && TFI.hasReservedCallFrame(MF)) MFI->CreateFixedObject(28,0,true); // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emited instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, 0); else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), 0); // MBlazeJmpLink = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); } if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); }
SDValue AVM2TargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); AVM2MachineFunctionInfo *FuncInfo = MF.getInfo<AVM2MachineFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_AVM2_32); SDValue Root = DAG.getRoot(); unsigned ArgOffset = 0; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue ArgValue; CCValAssign &VA = ArgLocs[i]; // FIXME: We ignore the register assignments of AnalyzeFormalArguments // because it doesn't know how to split a double into two i32 registers. EVT ObjectVT = VA.getValVT(); switch (ObjectVT.getSimpleVT().SimpleTy) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (!Ins[i].Used) { // Argument is dead. InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT)); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load; if (ObjectVT == MVT::i32) { Load = DAG.getLoad(MVT::i32, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0); } else { ISD::LoadExtType LoadOp = ISD::SEXTLOAD; unsigned Offset = 0; // LE FIPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, DL, MVT::i32, Root, FIPtr, MachinePointerInfo(), ObjectVT, false, false, 0); Load = DAG.getNode(ISD::TRUNCATE, DL, ObjectVT, Load); } InVals.push_back(Load); } ArgOffset += 4; break; case MVT::f32: if (!Ins[i].Used) { // Argument is dead. InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT)); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); InVals.push_back(DAG.getLoad(ObjectVT, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0)); } ArgOffset += 4; break; case MVT::i64: if (!Ins[i].Used) { // Argument is dead. InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT)); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue FIPtr4 = DAG.getNode(ISD::ADD, DL, MVT::i32, FIPtr, DAG.getConstant(4, MVT::i32)); SDValue Lo = DAG.getLoad(MVT::i32, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0); SDValue Hi = DAG.getLoad(MVT::i32, DL, Root, FIPtr4, MachinePointerInfo(), false, false, 0); InVals.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi)); } ArgOffset += 8; break; case MVT::f64: if (!Ins[i].Used) { // Argument is dead. InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT)); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); InVals.push_back(DAG.getLoad(ObjectVT, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0)); } ArgOffset += 8; break; } } if (isVarArg) { // Remember the vararg offset for the va_start implementation. FuncInfo->setVarArgsFrameOffset(ArgOffset); } return Chain; }
/// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand AlphaTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Wasn't expecting to be able to lower this!"); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsBase, VarArgsOffset); case ISD::RET: return LowerRET(Op,DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SINT_TO_FP: { assert(MVT::i64 == Op.getOperand(0).getValueType() && "Unhandled SINT_TO_FP type in custom expander!"); SDOperand LD; bool isDouble = MVT::f64 == Op.getValueType(); LD = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); SDOperand FP = DAG.getNode(isDouble?AlphaISD::CVTQT_:AlphaISD::CVTQS_, isDouble?MVT::f64:MVT::f32, LD); return FP; } case ISD::FP_TO_SINT: { bool isDouble = MVT::f64 == Op.getOperand(0).getValueType(); SDOperand src = Op.getOperand(0); if (!isDouble) //Promote src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, src); src = DAG.getNode(AlphaISD::CVTTQ_, MVT::f64, src); return DAG.getNode(ISD::BIT_CONVERT, MVT::i64, src); } case ISD::ConstantPool: { ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); Constant *C = CP->getConstVal(); SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i64, CP->getAlignment()); SDOperand Hi = DAG.getNode(AlphaISD::GPRelHi, MVT::i64, CPI, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); SDOperand Lo = DAG.getNode(AlphaISD::GPRelLo, MVT::i64, CPI, Hi); return Lo; } case ISD::GlobalAddress: { GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); GlobalValue *GV = GSDN->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i64, GSDN->getOffset()); // if (!GV->hasWeakLinkage() && !GV->isDeclaration() && !GV->hasLinkOnceLinkage()) { if (GV->hasInternalLinkage()) { SDOperand Hi = DAG.getNode(AlphaISD::GPRelHi, MVT::i64, GA, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); SDOperand Lo = DAG.getNode(AlphaISD::GPRelLo, MVT::i64, GA, Hi); return Lo; } else return DAG.getNode(AlphaISD::RelLit, MVT::i64, GA, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); } case ISD::ExternalSymbol: { return DAG.getNode(AlphaISD::RelLit, MVT::i64, DAG.getTargetExternalSymbol(cast<ExternalSymbolSDNode>(Op) ->getSymbol(), MVT::i64), DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); } case ISD::UREM: case ISD::SREM: //Expand only on constant case if (Op.getOperand(1).getOpcode() == ISD::Constant) { MVT::ValueType VT = Op.Val->getValueType(0); SDOperand Tmp1 = Op.Val->getOpcode() == ISD::UREM ? BuildUDIV(Op.Val, DAG, NULL) : BuildSDIV(Op.Val, DAG, NULL); Tmp1 = DAG.getNode(ISD::MUL, VT, Tmp1, Op.getOperand(1)); Tmp1 = DAG.getNode(ISD::SUB, VT, Op.getOperand(0), Tmp1); return Tmp1; } //fall through case ISD::SDIV: case ISD::UDIV: if (MVT::isInteger(Op.getValueType())) { if (Op.getOperand(1).getOpcode() == ISD::Constant) return Op.getOpcode() == ISD::SDIV ? BuildSDIV(Op.Val, DAG, NULL) : BuildUDIV(Op.Val, DAG, NULL); const char* opstr = 0; switch (Op.getOpcode()) { case ISD::UREM: opstr = "__remqu"; break; case ISD::SREM: opstr = "__remq"; break; case ISD::UDIV: opstr = "__divqu"; break; case ISD::SDIV: opstr = "__divq"; break; } SDOperand Tmp1 = Op.getOperand(0), Tmp2 = Op.getOperand(1), Addr = DAG.getExternalSymbol(opstr, MVT::i64); return DAG.getNode(AlphaISD::DivCall, MVT::i64, Addr, Tmp1, Tmp2); } break; case ISD::VAARG: { SDOperand Chain = Op.getOperand(0); SDOperand VAListP = Op.getOperand(1); SrcValueSDNode *VAListS = cast<SrcValueSDNode>(Op.getOperand(2)); SDOperand Base = DAG.getLoad(MVT::i64, Chain, VAListP, VAListS->getValue(), VAListS->getOffset()); SDOperand Tmp = DAG.getNode(ISD::ADD, MVT::i64, VAListP, DAG.getConstant(8, MVT::i64)); SDOperand Offset = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Base.getValue(1), Tmp, NULL, 0, MVT::i32); SDOperand DataPtr = DAG.getNode(ISD::ADD, MVT::i64, Base, Offset); if (MVT::isFloatingPoint(Op.getValueType())) { //if fp && Offset < 6*8, then subtract 6*8 from DataPtr SDOperand FPDataPtr = DAG.getNode(ISD::SUB, MVT::i64, DataPtr, DAG.getConstant(8*6, MVT::i64)); SDOperand CC = DAG.getSetCC(MVT::i64, Offset, DAG.getConstant(8*6, MVT::i64), ISD::SETLT); DataPtr = DAG.getNode(ISD::SELECT, MVT::i64, CC, FPDataPtr, DataPtr); } SDOperand NewOffset = DAG.getNode(ISD::ADD, MVT::i64, Offset, DAG.getConstant(8, MVT::i64)); SDOperand Update = DAG.getTruncStore(Offset.getValue(1), NewOffset, Tmp, NULL, 0, MVT::i32); SDOperand Result; if (Op.getValueType() == MVT::i32) Result = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Update, DataPtr, NULL, 0, MVT::i32); else Result = DAG.getLoad(Op.getValueType(), Update, DataPtr, NULL, 0); return Result; } case ISD::VACOPY: { SDOperand Chain = Op.getOperand(0); SDOperand DestP = Op.getOperand(1); SDOperand SrcP = Op.getOperand(2); SrcValueSDNode *DestS = cast<SrcValueSDNode>(Op.getOperand(3)); SrcValueSDNode *SrcS = cast<SrcValueSDNode>(Op.getOperand(4)); SDOperand Val = DAG.getLoad(getPointerTy(), Chain, SrcP, SrcS->getValue(), SrcS->getOffset()); SDOperand Result = DAG.getStore(Val.getValue(1), Val, DestP, DestS->getValue(), DestS->getOffset()); SDOperand NP = DAG.getNode(ISD::ADD, MVT::i64, SrcP, DAG.getConstant(8, MVT::i64)); Val = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Result, NP, NULL,0, MVT::i32); SDOperand NPD = DAG.getNode(ISD::ADD, MVT::i64, DestP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(Val.getValue(1), Val, NPD, NULL, 0, MVT::i32); } case ISD::VASTART: { SDOperand Chain = Op.getOperand(0); SDOperand VAListP = Op.getOperand(1); SrcValueSDNode *VAListS = cast<SrcValueSDNode>(Op.getOperand(2)); // vastart stores the address of the VarArgsBase and VarArgsOffset SDOperand FR = DAG.getFrameIndex(VarArgsBase, MVT::i64); SDOperand S1 = DAG.getStore(Chain, FR, VAListP, VAListS->getValue(), VAListS->getOffset()); SDOperand SA2 = DAG.getNode(ISD::ADD, MVT::i64, VAListP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(S1, DAG.getConstant(VarArgsOffset, MVT::i64), SA2, NULL, 0, MVT::i32); } case ISD::RETURNADDR: return DAG.getNode(AlphaISD::GlobalRetAddr, MVT::i64); //FIXME: implement case ISD::FRAMEADDR: break; } return SDOperand(); }
/// LowerFormalArguments - V8 uses a very simple ABI, where all values are /// passed in either one or two GPRs, including FP values. TODO: we should /// pass FP values in FP registers for fastcc functions. SDValue SparcTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = 68; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue ArgValue; CCValAssign &VA = ArgLocs[i]; // FIXME: We ignore the register assignments of AnalyzeFormalArguments // because it doesn't know how to split a double into two i32 registers. EVT ObjectVT = VA.getValVT(); switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); if (ObjectVT != MVT::i32) { unsigned AssertOp = ISD::AssertSext; Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg, DAG.getValueType(ObjectVT)); Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg); } InVals.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true, false); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load; if (ObjectVT == MVT::i32) { Load = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0, false, false, 0); } else { ISD::LoadExtType LoadOp = ISD::SEXTLOAD; // Sparc is big endian, so add an offset based on the ObjectVT. unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8); FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr, NULL, 0, ObjectVT, false, false, 0); Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load); } InVals.push_back(Load); } ArgOffset += 4; break; case MVT::f32: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR // FP value is passed in an integer register. unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg); InVals.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true, false); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load = DAG.getLoad(MVT::f32, dl, Chain, FIPtr, NULL, 0, false, false, 0); InVals.push_back(Load); } ArgOffset += 4; break; case MVT::i64: case MVT::f64: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else { SDValue HiVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi); HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true, false); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0, false, false, 0); } SDValue LoVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo); LoVal = DAG.getCopyFromReg(Chain, dl, VRegLo, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4, true, false); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0, false, false, 0); } // Compose the two halves together into an i64 unit. SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); // If we want a double, do a bit convert. if (ObjectVT == MVT::f64) WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue); InVals.push_back(WholeValue); } ArgOffset += 8; break; } } // Store remaining ArgRegs to the stack if this is a varargs function. if (isVarArg) { // Remember the vararg offset for the va_start implementation. FuncInfo->setVarArgsFrameOffset(ArgOffset); std::vector<SDValue> OutChains; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg, VReg); SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true, false); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, NULL, 0, false, false, 0)); ArgOffset += 4; } if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } } return Chain; }
/// LowerCCCArguments - transform physical registers into virtual registers and /// generate load operations for arguments places on the stack. // FIXME: struct return stuff // FIXME: varargs SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_MSP430); assert(!isVarArg && "Varargs not supported yet"); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { default: { #ifndef NDEBUG errs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getSimpleVT().SimpleTy << "\n"; #endif llvm_unreachable(0); } case MVT::i16: unsigned VReg = RegInfo.createVirtualRegister(MSP430::GR16RegisterClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); // If this is an 8-bit value, it is really passed promoted to 16 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); } } else { // Sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; if (ObjSize > 2) { errs() << "LowerFormalArguments Unhandled argument type: " << EVT(VA.getLocVT()).getEVTString() << "\n"; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } return Chain; }
/// LowerCCCArguments - transform physical registers into virtual registers and /// generate load operations for arguments places on the stack. // FIXME: struct return stuff // FIXME: varargs SDValue SystemZTargetLowering::LowerCCCArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); if (isVarArg) report_fatal_error("Varargs not supported yet"); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue ArgValue; CCValAssign &VA = ArgLocs[i]; EVT LocVT = VA.getLocVT(); if (VA.isRegLoc()) { // Arguments passed in registers TargetRegisterClass *RC; switch (LocVT.getSimpleVT().SimpleTy) { default: #ifndef NDEBUG errs() << "LowerFormalArguments Unhandled argument type: " << LocVT.getSimpleVT().SimpleTy << "\n"; #endif llvm_unreachable(0); case MVT::i64: RC = SystemZ::GR64RegisterClass; break; case MVT::f32: RC = SystemZ::FP32RegisterClass; break; case MVT::f64: RC = SystemZ::FP64RegisterClass; break; } unsigned VReg = RegInfo.createVirtualRegister(RC); RegInfo.addLiveIn(VA.getLocReg(), VReg); ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); } else { // Sanity check assert(VA.isMemLoc()); // Create the nodes corresponding to a load from this parameter slot. // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(LocVT.getSizeInBits()/8, VA.getLocMemOffset(), true, false); // Create the SelectionDAG nodes corresponding to a load // from this parameter SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(LocVT, dl, Chain, FIN, PseudoSourceValue::getFixedStack(FI), 0, false, false, 0); } // If this is an 8/16/32-bit value, it is really passed promoted to 64 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); } return Chain; }
/// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); switch (Op.getOpcode()) { default: llvm_unreachable("Wasn't expecting to be able to lower this!"); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: { unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); switch (IntNo) { default: break; // Don't custom lower most intrinsics. case Intrinsic::alpha_umulh: return DAG.getNode(ISD::MULHU, dl, MVT::i64, Op.getOperand(1), Op.getOperand(2)); } } case ISD::SRL_PARTS: { SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue bm = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(64, MVT::i64), ShAmt); SDValue BMCC = DAG.getSetCC(dl, MVT::i64, bm, DAG.getConstant(0, MVT::i64), ISD::SETLE); // if 64 - shAmt <= 0 SDValue Hi_Neg = DAG.getConstant(0, MVT::i64); SDValue ShAmt_Neg = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(0, MVT::i64), bm); SDValue Lo_Neg = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpHi, ShAmt_Neg); // else SDValue carries = DAG.getNode(ISD::SHL, dl, MVT::i64, ShOpHi, bm); SDValue Hi_Pos = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpHi, ShAmt); SDValue Lo_Pos = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpLo, ShAmt); Lo_Pos = DAG.getNode(ISD::OR, dl, MVT::i64, Lo_Pos, carries); // Merge SDValue Hi = DAG.getNode(ISD::SELECT, dl, MVT::i64, BMCC, Hi_Neg, Hi_Pos); SDValue Lo = DAG.getNode(ISD::SELECT, dl, MVT::i64, BMCC, Lo_Neg, Lo_Pos); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } // case ISD::SRA_PARTS: // case ISD::SHL_PARTS: case ISD::SINT_TO_FP: { assert(Op.getOperand(0).getValueType() == MVT::i64 && "Unhandled SINT_TO_FP type in custom expander!"); SDValue LD; bool isDouble = Op.getValueType() == MVT::f64; LD = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op.getOperand(0)); SDValue FP = DAG.getNode(isDouble?AlphaISD::CVTQT_:AlphaISD::CVTQS_, dl, isDouble?MVT::f64:MVT::f32, LD); return FP; } case ISD::FP_TO_SINT: { bool isDouble = Op.getOperand(0).getValueType() == MVT::f64; SDValue src = Op.getOperand(0); if (!isDouble) //Promote src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, src); src = DAG.getNode(AlphaISD::CVTTQ_, dl, MVT::f64, src); return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, src); } case ISD::ConstantPool: { ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); Constant *C = CP->getConstVal(); SDValue CPI = DAG.getTargetConstantPool(C, MVT::i64, CP->getAlignment()); // FIXME there isn't really any debug info here SDValue Hi = DAG.getNode(AlphaISD::GPRelHi, dl, MVT::i64, CPI, DAG.getGLOBAL_OFFSET_TABLE(MVT::i64)); SDValue Lo = DAG.getNode(AlphaISD::GPRelLo, dl, MVT::i64, CPI, Hi); return Lo; } case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for Alpha."); case ISD::GlobalAddress: { GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); GlobalValue *GV = GSDN->getGlobal(); SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i64, GSDN->getOffset()); // FIXME there isn't really any debug info here // if (!GV->hasWeakLinkage() && !GV->isDeclaration() && !GV->hasLinkOnceLinkage()) { if (GV->hasLocalLinkage()) { SDValue Hi = DAG.getNode(AlphaISD::GPRelHi, dl, MVT::i64, GA, DAG.getGLOBAL_OFFSET_TABLE(MVT::i64)); SDValue Lo = DAG.getNode(AlphaISD::GPRelLo, dl, MVT::i64, GA, Hi); return Lo; } else return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64, GA, DAG.getGLOBAL_OFFSET_TABLE(MVT::i64)); } case ISD::ExternalSymbol: { return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64, DAG.getTargetExternalSymbol(cast<ExternalSymbolSDNode>(Op) ->getSymbol(), MVT::i64), DAG.getGLOBAL_OFFSET_TABLE(MVT::i64)); } case ISD::UREM: case ISD::SREM: //Expand only on constant case if (Op.getOperand(1).getOpcode() == ISD::Constant) { EVT VT = Op.getNode()->getValueType(0); SDValue Tmp1 = Op.getNode()->getOpcode() == ISD::UREM ? BuildUDIV(Op.getNode(), DAG, NULL) : BuildSDIV(Op.getNode(), DAG, NULL); Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Op.getOperand(1)); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Op.getOperand(0), Tmp1); return Tmp1; } //fall through case ISD::SDIV: case ISD::UDIV: if (Op.getValueType().isInteger()) { if (Op.getOperand(1).getOpcode() == ISD::Constant) return Op.getOpcode() == ISD::SDIV ? BuildSDIV(Op.getNode(), DAG, NULL) : BuildUDIV(Op.getNode(), DAG, NULL); const char* opstr = 0; switch (Op.getOpcode()) { case ISD::UREM: opstr = "__remqu"; break; case ISD::SREM: opstr = "__remq"; break; case ISD::UDIV: opstr = "__divqu"; break; case ISD::SDIV: opstr = "__divq"; break; } SDValue Tmp1 = Op.getOperand(0), Tmp2 = Op.getOperand(1), Addr = DAG.getExternalSymbol(opstr, MVT::i64); return DAG.getNode(AlphaISD::DivCall, dl, MVT::i64, Addr, Tmp1, Tmp2); } break; case ISD::VAARG: { SDValue Chain, DataPtr; LowerVAARG(Op.getNode(), Chain, DataPtr, DAG); SDValue Result; if (Op.getValueType() == MVT::i32) Result = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Chain, DataPtr, NULL, 0, MVT::i32); else Result = DAG.getLoad(Op.getValueType(), dl, Chain, DataPtr, NULL, 0); return Result; } case ISD::VACOPY: { SDValue Chain = Op.getOperand(0); SDValue DestP = Op.getOperand(1); SDValue SrcP = Op.getOperand(2); const Value *DestS = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); const Value *SrcS = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); SDValue Val = DAG.getLoad(getPointerTy(), dl, Chain, SrcP, SrcS, 0); SDValue Result = DAG.getStore(Val.getValue(1), dl, Val, DestP, DestS, 0); SDValue NP = DAG.getNode(ISD::ADD, dl, MVT::i64, SrcP, DAG.getConstant(8, MVT::i64)); Val = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Result, NP, NULL,0, MVT::i32); SDValue NPD = DAG.getNode(ISD::ADD, dl, MVT::i64, DestP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(Val.getValue(1), dl, Val, NPD, NULL, 0, MVT::i32); } case ISD::VASTART: { SDValue Chain = Op.getOperand(0); SDValue VAListP = Op.getOperand(1); const Value *VAListS = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); // vastart stores the address of the VarArgsBase and VarArgsOffset SDValue FR = DAG.getFrameIndex(VarArgsBase, MVT::i64); SDValue S1 = DAG.getStore(Chain, dl, FR, VAListP, VAListS, 0); SDValue SA2 = DAG.getNode(ISD::ADD, dl, MVT::i64, VAListP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(S1, dl, DAG.getConstant(VarArgsOffset, MVT::i64), SA2, NULL, 0, MVT::i32); } case ISD::RETURNADDR: return DAG.getNode(AlphaISD::GlobalRetAddr, DebugLoc::getUnknownLoc(), MVT::i64); //FIXME: implement case ISD::FRAMEADDR: break; } return SDValue(); }
/// LowerCCCArguments - transform physical registers into virtual registers and /// generate load operations for arguments places on the stack. // FIXME: struct return stuff // FIXME: varargs SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SDValue Root = Op.getOperand(0); bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; unsigned CC = MF.getFunction()->getCallingConv(); DebugLoc dl = Op.getDebugLoc(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MSP430); assert(!isVarArg && "Varargs not supported yet"); SmallVector<SDValue, 16> ArgValues; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { // Arguments passed in registers MVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT()) { default: cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: " << RegVT.getSimpleVT() << "\n"; abort(); case MVT::i16: unsigned VReg = RegInfo.createVirtualRegister(MSP430::GR16RegisterClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Root, dl, VReg, RegVT); // If this is an 8-bit value, it is really passed promoted to 16 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); ArgValues.push_back(ArgValue); } } else { // Sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; if (ObjSize > 2) { cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: " << VA.getLocVT().getSimpleVT() << "\n"; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset()); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); ArgValues.push_back(DAG.getLoad(VA.getLocVT(), dl, Root, FIN, PseudoSourceValue::getFixedStack(FI), 0)); } } ArgValues.push_back(Root); // Return the new list of results. return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(), &ArgValues[0], ArgValues.size()).getValue(Op.getResNo()); }
// LowerCCCCallTo - functions arguments are copied from virtual regs to // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue LanaiTargetLowering::LowerCCCCallTo( SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, bool IsTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); NumFixedArgs = 0; if (IsVarArg && G) { const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); if (CalleeFn) NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); } if (NumFixedArgs) CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); else { if (CallConv == CallingConv::Fast) CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); else CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Create local copies for byval args. SmallVector<SDValue, 8> ByValArgs; for (unsigned I = 0, E = Outs.size(); I != E; ++I) { ISD::ArgFlagsTy Flags = Outs[I].Flags; if (!Flags.isByVal()) continue; SDValue Arg = OutVals[I]; unsigned Size = Flags.getByValSize(); unsigned Align = Flags.getByValAlign(); int FI = MFI->CreateStackObject(Size, Align, false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, /*IsVolatile=*/false, /*AlwaysInline=*/false, /*IsTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); ByValArgs.push_back(FIPtr); } Chain = DAG.getCALLSEQ_START( Chain, DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), DL); SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; SmallVector<SDValue, 12> MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; SDValue Arg = OutVals[I]; ISD::ArgFlagsTy Flags = Outs[I].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } // Use local copy if it is a byval arg. if (Flags.isByVal()) Arg = ByValArgs[J++]; // Arguments that can be passed on register must be kept at RegsToPass // vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, getPointerTy(DAG.getDataLayout())); SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); MemOpChains.push_back(DAG.getStore( Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } } // Transform all store nodes into one single node because all store nodes are // independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); SDValue InFlag; // Build a sequence of copy-to-reg nodes chained together with token chain and // flag operands which copy the outgoing args into registers. The InFlag in // necessary since all emitted instructions must be stuck together. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, RegsToPass[I].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. uint8_t OpFlag = LanaiII::MO_NO_FLAG; if (G) { Callee = DAG.getTargetGlobalAddress( G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { Callee = DAG.getTargetExternalSymbol( E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add a register mask operand representing the call-preserved registers. // TODO: Should return-twice functions be handled? const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) Ops.push_back(DAG.getRegister(RegsToPass[I].first, RegsToPass[I].second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, ArrayRef<SDValue>(&Ops[0], Ops.size())); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END( Chain, DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, DL); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals); }
// LowerCCCArguments - transform physical registers into virtual registers and // generate load operations for arguments places on the stack. SDValue LanaiTargetLowering::LowerCCCArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); if (CallConv == CallingConv::Fast) { CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); } else { CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); } for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { case MVT::i32: { unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); // If this is an 8/16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); break; } default: DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getSimpleVT().SimpleTy << "\n"); llvm_unreachable("unhandled argument type"); } } else { // Sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; // Check that the argument fits in stack slot if (ObjSize > 4) { errs() << "LowerFormalArguments Unhandled argument type: " << EVT(VA.getLocVT()).getEVTString() << "\n"; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(DAG.getLoad( VA.getLocVT(), DL, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, false, 0)); } } // The Lanai ABI for returning structs by value requires that we copy // the sret argument into rv for the return. Save the argument into // a virtual register so that we can access it from the return points. if (MF.getFunction()->hasStructRetAttr()) { unsigned Reg = LanaiMFI->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); LanaiMFI->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); } if (IsVarArg) { // Record the frame index of the first variable argument // which is a value necessary to VASTART. int FI = MFI->CreateFixedObject(4, CCInfo.getNextStackOffset(), true); LanaiMFI->setVarArgsFrameIndex(FI); } return Chain; }
SDValue Y86TargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); // Gather info about the formals. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Y86); // Push corresponding SDValues for the arguments. SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &Y86::GPRRegClass; else llvm_unreachable("Unknown EVT"); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); } else { assert(VA.isMemLoc()); EVT ValVT; if (VA.getLocInfo() == CCValAssign::Indirect) ValVT = VA.getLocVT(); else ValVT = VA.getValVT(); // Create space in the stack (and an associated frame index) // accordingly: Either the complete size of the object is it's // a call by value or a pointer size otherwise. MachineFrameInfo *MFI = MF.getFrameInfo(); ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Flags.isByVal()) { unsigned Bytes = Flags.getByValSize(); if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), false); ArgValue = DAG.getFrameIndex(FI, getPointerTy()); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } } InVals.push_back(ArgValue); } return Chain; }
SDValue ARCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { auto *AFI = DAG.getMachineFunction().getInfo<ARCFunctionInfo>(); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); // CCValAssign - represent the assignment of // the return value to a location SmallVector<CCValAssign, 16> RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values. if (!IsVarArg) CCInfo.AllocateStack(AFI->getReturnStackOffset(), 4); CCInfo.AnalyzeReturn(Outs, RetCC_ARC); SDValue Flag; SmallVector<SDValue, 4> RetOps(1, Chain); SmallVector<SDValue, 4> MemOpChains; // Handle return values that must be copied to memory. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); if (IsVarArg) { report_fatal_error("Can't return value from vararg function in memory"); } int Offset = VA.getLocMemOffset(); unsigned ObjSize = VA.getLocVT().getStoreSize(); // Create the frame index object for the memory location. int FI = MFI.CreateFixedObject(ObjSize, Offset, false); // Create a SelectionDAG node corresponding to a store // to this memory location. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); MemOpChains.push_back(DAG.getStore( Chain, dl, OutVals[i], FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); } // Transform all store nodes into one single node because // all stores are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Now handle return values copied to registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (!VA.isRegLoc()) continue; // Copy the result values into the output registers. Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // guarantee that all emitted copies are // stuck together, avoiding something bad Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); // What to do with the RetOps? return DAG.getNode(ARCISD::RET, dl, MVT::Other, RetOps); }
/// Transform physical registers into virtual registers, and generate load /// operations for argument places on the stack. SDValue ARCTargetLowering::LowerCallArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); auto *AFI = MF.getInfo<ARCFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_ARC); unsigned StackSlotSize = 4; if (!IsVarArg) AFI->setReturnStackOffset(CCInfo.getNextStackOffset()); // All getCopyFromReg ops must precede any getMemcpys to prevent the // scheduler clobbering a register before it has been copied. // The stages are: // 1. CopyFromReg (and load) arg & vararg registers. // 2. Chain CopyFromReg nodes into a TokenFactor. // 3. Memcpy 'byVal' args & push final InVals. // 4. Chain mem ops nodes into a TokenFactor. SmallVector<SDValue, 4> CFRegNode; SmallVector<ArgDataPair, 4> ArgData; SmallVector<SDValue, 4> MemOps; // 1a. CopyFromReg (and load) arg registers. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue ArgIn; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { default: { DEBUG(errs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getSimpleVT().SimpleTy << "\n"); llvm_unreachable("Unhandled LowerFormalArguments type."); } case MVT::i32: unsigned VReg = RegInfo.createVirtualRegister(&ARC::GPR32RegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); } } else { // sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getStoreSize(); assert((ObjSize <= StackSlotSize) && "Unhandled argument"); // Create the frame index object for this incoming parameter... int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI)); } const ArgDataPair ADP = {ArgIn, Ins[i].Flags}; ArgData.push_back(ADP); } // 1b. CopyFromReg vararg registers. if (IsVarArg) { // Argument registers static const MCPhysReg ArgRegs[] = {ARC::R0, ARC::R1, ARC::R2, ARC::R3, ARC::R4, ARC::R5, ARC::R6, ARC::R7}; auto *AFI = MF.getInfo<ARCFunctionInfo>(); unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); if (FirstVAReg < array_lengthof(ArgRegs)) { int Offset = 0; // Save remaining registers, storing higher register numbers at a higher // address // There are (array_lengthof(ArgRegs) - FirstVAReg) registers which // need to be saved. int VarFI = MFI.CreateFixedObject((array_lengthof(ArgRegs) - FirstVAReg) * 4, CCInfo.getNextStackOffset(), true); AFI->setVarArgsFrameIndex(VarFI); SDValue FIN = DAG.getFrameIndex(VarFI, MVT::i32); for (unsigned i = FirstVAReg; i < array_lengthof(ArgRegs); i++) { // Move argument from phys reg -> virt reg unsigned VReg = RegInfo.createVirtualRegister(&ARC::GPR32RegClass); RegInfo.addLiveIn(ArgRegs[i], VReg); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); SDValue VAObj = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN, DAG.getConstant(Offset, dl, MVT::i32)); // Move argument from virt reg -> stack SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, VAObj, MachinePointerInfo()); MemOps.push_back(Store); Offset += 4; } } else { llvm_unreachable("Too many var args parameters."); } } // 2. Chain CopyFromReg nodes into a TokenFactor. if (!CFRegNode.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); // 3. Memcpy 'byVal' args & push final InVals. // Aggregates passed "byVal" need to be copied by the callee. // The callee will use a pointer to this copy, rather than the original // pointer. for (const auto &ArgDI : ArgData) { if (ArgDI.Flags.isByVal() && ArgDI.Flags.getByValSize()) { unsigned Size = ArgDI.Flags.getByValSize(); unsigned Align = std::max(StackSlotSize, ArgDI.Flags.getByValAlign()); // Create a new object on the stack and copy the pointee into it. int FI = MFI.CreateStackObject(Size, Align, false); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(FIN); MemOps.push_back(DAG.getMemcpy( Chain, dl, FIN, ArgDI.SDV, DAG.getConstant(Size, dl, MVT::i32), Align, false, false, false, MachinePointerInfo(), MachinePointerInfo())); } else { InVals.push_back(ArgDI.SDV); } } // 4. Chain mem ops nodes into a TokenFactor. if (!MemOps.empty()) { MemOps.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); } return Chain; }
/// LowerFormalArguments - transform physical registers into /// virtual registers and generate load operations for /// arguments places on the stack. SDValue MBlazeTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>(); unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); MBlazeFI->setVarArgsFrameIndex(0); // Used with vargs to acumulate store chains. std::vector<SDValue> OutChains; // Keep track of the last register used for arguments unsigned ArgRegEnd = 0; // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze); SDValue StackPtr; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored on registers if (VA.isRegLoc()) { MVT RegVT = VA.getLocVT(); ArgRegEnd = VA.getLocReg(); TargetRegisterClass *RC = 0; if (RegVT == MVT::i32) RC = MBlaze::GPRRegisterClass; else if (RegVT == MVT::f32) RC = MBlaze::GPRRegisterClass; else llvm_unreachable("RegVT not supported by LowerFormalArguments"); // Transform the arguments stored on // physical registers into virtual ones unsigned Reg = MF.addLiveIn(ArgRegEnd, RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it has been passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. If if is a floating point value // then convert to the correct type. if (VA.getLocInfo() != CCValAssign::Full) { unsigned Opcode = 0; if (VA.getLocInfo() == CCValAssign::SExt) Opcode = ISD::AssertSext; else if (VA.getLocInfo() == CCValAssign::ZExt) Opcode = ISD::AssertZext; if (Opcode) ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); // The last argument is not a register ArgRegEnd = 0; // The stack pointer offset is relative to the caller stack frame. // Since the real stack size is unknown here, a negative SPOffset // is used so there's a way to adjust these offsets when the stack // size get known (on EliminateFrameIndex). A dummy SPOffset is // used instead of a direct negative address (which is recorded to // be used on emitPrologue) to avoid mis-calc of the first stack // offset on PEI::calculateFrameObjectOffsets. // Arguments are always 32-bit. unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; unsigned StackLoc = VA.getLocMemOffset() + 4; int FI = MFI->CreateFixedObject(ArgSize, 0, true); MBlazeFI->recordLoadArgsFI(FI, -StackLoc); // Create load nodes to retrieve arguments from the stack SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } // To meet ABI, when VARARGS are passed on registers, the registers // must have their values written to the caller stack frame. If the last // argument was placed in the stack, there's no need to save any register. if ((isVarArg) && ArgRegEnd) { if (StackPtr.getNode() == 0) StackPtr = DAG.getRegister(StackReg, getPointerTy()); // The last register argument that must be saved is MBlaze::R10 TargetRegisterClass *RC = MBlaze::GPRRegisterClass; unsigned Begin = MBlazeRegisterInfo::getRegisterNumbering(MBlaze::R5); unsigned Start = MBlazeRegisterInfo::getRegisterNumbering(ArgRegEnd+1); unsigned End = MBlazeRegisterInfo::getRegisterNumbering(MBlaze::R10); unsigned StackLoc = Start - Begin + 1; for (; Start <= End; ++Start, ++StackLoc) { unsigned Reg = MBlazeRegisterInfo::getRegisterFromNumbering(Start); unsigned LiveReg = MF.addLiveIn(Reg, RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32); int FI = MFI->CreateFixedObject(4, 0, true); MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4)); SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, MachinePointerInfo(), false, false, 0)); // Record the frame index of the first variable argument // which is a value necessary to VASTART. if (!MBlazeFI->getVarArgsFrameIndex()) MBlazeFI->setVarArgsFrameIndex(FI); } } // All stores are grouped in one node to allow the matching between // the size of Ins and InVals. This only happens when on varg functions if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } return Chain; }
SDValue AlphaTargetLowering::LowerFormalArguments(SDValue Chain, unsigned CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned args_int[] = { Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; unsigned args_float[] = { Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { SDValue argt; EVT ObjectVT = Ins[ArgNo].VT; SDValue ArgVal; if (ArgNo < 6) { switch (ObjectVT.getSimpleVT().SimpleTy) { default: assert(false && "Invalid value type!"); case MVT::f64: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, args_float[ArgNo], ObjectVT); break; case MVT::f32: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F4RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, args_float[ArgNo], ObjectVT); break; case MVT::i64: args_int[ArgNo] = AddLiveIn(MF, args_int[ArgNo], &Alpha::GPRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, args_int[ArgNo], MVT::i64); break; } } else { //more args // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(8, 8 * (ArgNo - 6)); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i64); ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0); } InVals.push_back(ArgVal); } // If the functions takes variable number of arguments, copy all regs to stack if (isVarArg) { VarArgsOffset = Ins.size() * 8; std::vector<SDValue> LS; for (int i = 0; i < 6; ++i) { if (TargetRegisterInfo::isPhysicalRegister(args_int[i])) args_int[i] = AddLiveIn(MF, args_int[i], &Alpha::GPRCRegClass); SDValue argt = DAG.getCopyFromReg(Chain, dl, args_int[i], MVT::i64); int FI = MFI->CreateFixedObject(8, -8 * (6 - i)); if (i == 0) VarArgsBase = FI; SDValue SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Chain, dl, argt, SDFI, NULL, 0)); if (TargetRegisterInfo::isPhysicalRegister(args_float[i])) args_float[i] = AddLiveIn(MF, args_float[i], &Alpha::F8RCRegClass); argt = DAG.getCopyFromReg(Chain, dl, args_float[i], MVT::f64); FI = MFI->CreateFixedObject(8, - 8 * (12 - i)); SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Chain, dl, argt, SDFI, NULL, 0)); } //Set up a token factor with all the stack traffic Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LS[0], LS.size()); } return Chain; }
SDValue SparcTargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // Sparc target does not yet support tail call optimization. isTailCall = false; // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getTarget(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); // Get the size of the outgoing arguments stack space requirement. unsigned ArgsSize = CCInfo.getNextStackOffset(); // Keep stack frames 8-byte aligned. ArgsSize = (ArgsSize+7) & ~7; MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); //Create local copies for byval args. SmallVector<SDValue, 8> ByValArgs; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; if (!Flags.isByVal()) continue; SDValue Arg = OutVals[i]; unsigned Size = Flags.getByValSize(); unsigned Align = Flags.getByValAlign(); int FI = MFI->CreateStackObject(Size, Align, false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy()); SDValue SizeNode = DAG.getConstant(Size, MVT::i32); Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align, false, //isVolatile, (Size <= 32), //AlwaysInline if size <= 32 MachinePointerInfo(), MachinePointerInfo()); ByValArgs.push_back(FIPtr); } Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true)); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<SDValue, 8> MemOpChains; const unsigned StackOffset = 92; bool hasStructRetAttr = false; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; //Use local copy if it is a byval arg. if (Flags.isByVal()) Arg = ByValArgs[byvalArgIdx++]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } if (Flags.isSRet()) { assert(VA.needsCustom()); // store SRet argument in %sp+64 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(64); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); hasStructRetAttr = true; continue; } if (VA.needsCustom()) { assert(VA.getLocVT() == MVT::f64); if (VA.isMemLoc()) { unsigned Offset = VA.getLocMemOffset() + StackOffset; //if it is double-word aligned, just store. if (Offset % 8 == 0) { SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); continue; } } SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Arg, StackPtr, MachinePointerInfo(), false, false, 0); // Sparc is big-endian, so the high part comes first. SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr, MachinePointerInfo(), false, false, 0); // Increment the pointer to the other half. StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, DAG.getIntPtrConstant(4)); // Load the low part. SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr, MachinePointerInfo(), false, false, 0); if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Hi)); assert(i+1 != e); CCValAssign &NextVA = ArgLocs[++i]; if (NextVA.isRegLoc()) { RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Lo)); } else { //Store the low part in stack. unsigned Offset = NextVA.getLocMemOffset() + StackOffset; SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff, MachinePointerInfo(), false, false, 0)); } } else { unsigned Offset = VA.getLocMemOffset() + StackOffset; // Store the high part. SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Hi, PtrOff, MachinePointerInfo(), false, false, 0)); // Store the low part. PtrOff = DAG.getIntPtrConstant(Offset+4); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff, MachinePointerInfo(), false, false, 0)); } continue; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { if (VA.getLocVT() != MVT::f32) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } assert(VA.isMemLoc()); // Create a store off the stack pointer for this argument. SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+StackOffset); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } // Emit all stores, make sure the occur before any copies into physregs. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { unsigned Reg = RegsToPass[i].first; // Remap I0->I7 -> O0->O7. if (Reg >= SP::I0 && Reg <= SP::I7) Reg = Reg-SP::I0+SP::O0; Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0; // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); // Returns a chain & a flag for retval copy to use SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (hasStructRetAttr) Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32)); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { unsigned Reg = RegsToPass[i].first; if (Reg >= SP::I0 && Reg <= SP::I7) Reg = Reg-SP::I0+SP::O0; Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); } if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; CCState RVInfo(CallConv, isVarArg, DAG.getTarget(), RVLocs, *DAG.getContext()); RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { unsigned Reg = RVLocs[i].getLocReg(); // Remap I0->I7 -> O0->O7. if (Reg >= SP::I0 && Reg <= SP::I7) Reg = Reg-SP::I0+SP::O0; Chain = DAG.getCopyFromReg(Chain, dl, Reg, RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; }
/// LowerFormalArguments - V8 uses a very simple ABI, where all values are /// passed in either one or two GPRs, including FP values. TODO: we should /// pass FP values in FP registers for fastcc functions. SDValue SparcTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); const unsigned StackOffset = 92; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (i == 0 && Ins[i].Flags.isSRet()) { //Get SRet from [%fp+64] int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); InVals.push_back(Arg); continue; } if (VA.isRegLoc()) { if (VA.needsCustom()) { assert(VA.getLocVT() == MVT::f64); unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); assert(i+1 < e); CCValAssign &NextVA = ArgLocs[++i]; SDValue LoVal; if (NextVA.isMemLoc()) { int FrameIdx = MF.getFrameInfo()-> CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); } else { unsigned loReg = MF.addLiveIn(NextVA.getLocReg(), &SP::IntRegsRegClass); LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); } SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue); InVals.push_back(WholeValue); continue; } unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); if (VA.getLocVT() == MVT::f32) Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); else if (VA.getLocVT() != MVT::i32) { Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, DAG.getValueType(VA.getLocVT())); Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); } InVals.push_back(Arg); continue; } assert(VA.isMemLoc()); unsigned Offset = VA.getLocMemOffset()+StackOffset; if (VA.needsCustom()) { assert(VA.getValVT() == MVT::f64); //If it is double-word aligned, just load. if (Offset % 8 == 0) { int FI = MF.getFrameInfo()->CreateFixedObject(8, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy()); SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo(), false,false, 0); InVals.push_back(Load); continue; } int FI = MF.getFrameInfo()->CreateFixedObject(4, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy()); SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); int FI2 = MF.getFrameInfo()->CreateFixedObject(4, Offset+4, true); SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy()); SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo(), false, false, 0); SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue); InVals.push_back(WholeValue); continue; } int FI = MF.getFrameInfo()->CreateFixedObject(4, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy()); SDValue Load ; if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); } else { ISD::LoadExtType LoadOp = ISD::SEXTLOAD; // Sparc is big endian, so add an offset based on the ObjectVT. unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8); FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr, MachinePointerInfo(), VA.getValVT(), false, false,0); Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load); } InVals.push_back(Load); } if (MF.getFunction()->hasStructRetAttr()) { //Copy the SRet Argument to SRetReturnReg SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); unsigned Reg = SFI->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); SFI->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); } // Store remaining ArgRegs to the stack if this is a varargs function. if (isVarArg) { static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6); const unsigned *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = CCInfo.getNextStackOffset(); if (NumAllocated == 6) ArgOffset += StackOffset; else { assert(!ArgOffset); ArgOffset = 68+4*NumAllocated; } // Remember the vararg offset for the va_start implementation. FuncInfo->setVarArgsFrameOffset(ArgOffset); std::vector<SDValue> OutChains; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg, VReg); SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo(), false, false, 0)); ArgOffset += 4; } if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } } return Chain; }
SDValue Cpu0TargetLowering::LowerCall(SDValue InChain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool doesNotRet, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { #if 1 // Cpu0 target does not yet support tail call optimization. isTailCall = false; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering(); bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; Cpu0FunctionInfo *Cpu0FI = MF.getInfo<Cpu0FunctionInfo>(); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_Cpu0); // Get a count of how many bytes are to be pushed on the stack. unsigned NextStackOffset = CCInfo.getNextStackOffset(); // Chain is the output chain of the last Load/Store or CopyToReg node. // ByValChain is the output chain of the last Memcpy node created for copying // byval arguments to the stack. SDValue Chain, CallSeqStart, ByValChain; SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true); Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal); ByValChain = InChain; #if 0 // If this is the first call, create a stack frame object that points to // a location to which .cprestore saves $gp. if (IsO32 && IsPIC && Cpu0FI->globalBaseRegFixed() && !Cpu0FI->getGPFI()) Cpu0FI->setGPFI(MFI->CreateFixedObject(4, 0, true)); #endif // Get the frame index of the stack frame object that points to the location // of dynamically allocated area on the stack. int DynAllocFI = Cpu0FI->getDynAllocFI(); #if 0 // Update size of the maximum argument space. // For O32, a minimum of four words (16 bytes) of argument space is // allocated. if (IsO32) NextStackOffset = std::max(NextStackOffset, (unsigned)16); #endif unsigned MaxCallFrameSize = Cpu0FI->getMaxCallFrameSize(); if (MaxCallFrameSize < NextStackOffset) { Cpu0FI->setMaxCallFrameSize(NextStackOffset); // Set the offsets relative to $sp of the $gp restore slot and dynamically // allocated stack space. These offsets must be aligned to a boundary // determined by the stack alignment of the ABI. unsigned StackAlignment = TFL->getStackAlignment(); NextStackOffset = (NextStackOffset + StackAlignment - 1) / StackAlignment * StackAlignment; if (Cpu0FI->needGPSaveRestore()) MFI->setObjectOffset(Cpu0FI->getGPFI(), NextStackOffset); MFI->setObjectOffset(DynAllocFI, NextStackOffset); } // With EABI is it possible to have 16 args on registers. SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; SmallVector<SDValue, 8> MemOpChains; int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue Arg = OutVals[i]; CCValAssign &VA = ArgLocs[i]; MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); ISD::ArgFlagsTy Flags = Outs[i].Flags; // ByVal Arg. if (Flags.isByVal()) { assert(Flags.getByValSize() && "ByVal args of size 0 should have been ignored by front-end."); #if 0 if (IsO32) WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, MFI, DAG, Arg, VA, Flags, getPointerTy(), Subtarget->isLittle()); #endif #if 0 else PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, MFI, DAG, Arg, VA, Flags, getPointerTy(), Subtarget->isLittle()); #endif continue; } // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: #if 0 if (VA.isRegLoc()) { if ((ValVT == MVT::f32 && LocVT == MVT::i32) || (ValVT == MVT::f64 && LocVT == MVT::i64)) Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg); else if (ValVT == MVT::f64 && LocVT == MVT::i32) { SDValue Lo = DAG.getNode(Cpu0ISD::ExtractElementF64, dl, MVT::i32, Arg, DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(Cpu0ISD::ExtractElementF64, dl, MVT::i32, Arg, DAG.getConstant(1, MVT::i32)); if (!Subtarget->isLittle()) std::swap(Lo, Hi); unsigned LocRegLo = VA.getLocReg(); unsigned LocRegHigh = getNextIntArgReg(LocRegLo); RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); continue; } } #else assert("CCValAssign::Full:"); // Gamma debug #endif break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } // Register can't get to this point... assert(VA.isMemLoc()); // Create the frame index object for this incoming parameter LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), true); SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy()); // emit ISD::STORE whichs stores the // parameter value to a stack Location MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } // Extend range of indices of frame objects for outgoing arguments that were // created during this function call. Skip this step if no such objects were // created. if (LastFI) Cpu0FI->extendOutArgFIRange(FirstFI, LastFI); // If a memcpy has been created to copy a byval arg to a stack, replace the // chain input of CallSeqStart with ByValChain. if (InChain != ByValChain) DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain, NextStackOffsetVal); // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. unsigned char OpFlag; #if 0 // cpu0 int 32 only bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25 #else bool IsPICCall = IsPIC; // true if calls are translated to jalr $25 #endif bool GlobalOrExternal = false; SDValue CalleeLo; if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { if (IsPICCall && G->getGlobal()->hasInternalLinkage()) { OpFlag = Cpu0II::MO_GOT; #if 0 unsigned char LoFlag = IsO32 ? Cpu0II::MO_ABS_LO : Cpu0II::MO_GOT_OFST; #else unsigned char LoFlag = Cpu0II::MO_ABS_LO; #endif Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, OpFlag); CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, LoFlag); } else { OpFlag = IsPICCall ? Cpu0II::MO_GOT_CALL : Cpu0II::MO_NO_FLAG; Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, OpFlag); } GlobalOrExternal = true; } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { if (!IsPIC) // static OpFlag = Cpu0II::MO_NO_FLAG; else // O32 & PIC OpFlag = Cpu0II::MO_GOT_CALL; Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), OpFlag); GlobalOrExternal = true; } SDValue InFlag; // Create nodes that load address of callee and copy it to T9 if (IsPICCall) { if (GlobalOrExternal) { // Load callee address Callee = DAG.getNode(Cpu0ISD::Wrapper, dl, getPointerTy(), GetGlobalReg(DAG, getPointerTy()), Callee); SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(), false, false, false, 0); // Use GOT+LO if callee has internal linkage. if (CalleeLo.getNode()) { SDValue Lo = DAG.getNode(Cpu0ISD::Lo, dl, getPointerTy(), CalleeLo); Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo); } else Callee = LoadValue; } } // T9 should contain the address of the callee function if // -reloction-model=pic or it is an indirect call. if (IsPICCall || !GlobalOrExternal) { // copy to T9 unsigned T9Reg = Cpu0::T9; Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0)); InFlag = Chain.getValue(1); Callee = DAG.getRegister(T9Reg, getPointerTy()); } // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // Cpu0JmpLink = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(Cpu0ISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NextStackOffset, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); #else return InChain; #endif }
SDValue NVPTXTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout *TD = getDataLayout(); const Function *F = MF.getFunction(); const AttrListPtr &PAL = F->getAttributes(); SDValue Root = DAG.getRoot(); std::vector<SDValue> OutChains; bool isKernel = llvm::isKernelFunction(*F); bool isABI = (nvptxSubtarget.getSmVersion() >= 20); std::vector<Type *> argTypes; std::vector<const Argument *> theArgs; for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { theArgs.push_back(I); argTypes.push_back(I->getType()); } assert(argTypes.size() == Ins.size() && "Ins types and function types did not match"); int idx = 0; for (unsigned i=0, e=Ins.size(); i!=e; ++i, ++idx) { Type *Ty = argTypes[i]; EVT ObjectVT = getValueType(Ty); assert(ObjectVT == Ins[i].VT && "Ins type did not match function type"); // If the kernel argument is image*_t or sampler_t, convert it to // a i32 constant holding the parameter position. This can later // matched in the AsmPrinter to output the correct mangled name. if (isImageOrSamplerVal(theArgs[i], (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() : 0))) { assert(isKernel && "Only kernels can have image/sampler params"); InVals.push_back(DAG.getConstant(i+1, MVT::i32)); continue; } if (theArgs[i]->use_empty()) { // argument is dead InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT)); continue; } // In the following cases, assign a node order of "idx+1" // to newly created nodes. The SDNOdes for params have to // appear in the same order as their order of appearance // in the original function. "idx+1" holds that order. if (PAL.getParamAttributes(i+1).hasAttribute(Attributes::ByVal) == false) { // A plain scalar. if (isABI || isKernel) { // If ABI, load from the param symbol SDValue Arg = getParamSymbol(DAG, idx); Value *srcValue = new Argument(PointerType::get(ObjectVT.getTypeForEVT( F->getContext()), llvm::ADDRESS_SPACE_PARAM)); SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg, MachinePointerInfo(srcValue), false, false, false, TD->getABITypeAlignment(ObjectVT.getTypeForEVT( F->getContext()))); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } else { // If no ABI, just move the param symbol SDValue Arg = getParamSymbol(DAG, idx, ObjectVT); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } continue; } // Param has ByVal attribute if (isABI || isKernel) { // Return MoveParam(param symbol). // Ideally, the param symbol can be returned directly, // but when SDNode builder decides to use it in a CopyToReg(), // machine instruction fails because TargetExternalSymbol // (not lowered) is target dependent, and CopyToReg assumes // the source is lowered. SDValue Arg = getParamSymbol(DAG, idx, getPointerTy()); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); if (isKernel) InVals.push_back(p); else { SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT, DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p); InVals.push_back(p2); } } else { // Have to move a set of param symbols to registers and // store them locally and return the local pointer in InVals const PointerType *elemPtrType = dyn_cast<PointerType>(argTypes[i]); assert(elemPtrType && "Byval parameter should be a pointer type"); Type *elemType = elemPtrType->getElementType(); // Compute the constituent parts SmallVector<EVT, 16> vtparts; SmallVector<uint64_t, 16> offsets; ComputeValueVTs(*this, elemType, vtparts, &offsets, 0); unsigned totalsize = 0; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) totalsize += vtparts[j].getStoreSizeInBits(); SDValue localcopy = DAG.getFrameIndex(MF.getFrameInfo()-> CreateStackObject(totalsize/8, 16, false), getPointerTy()); unsigned sizesofar = 0; std::vector<SDValue> theChains; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) { unsigned numElems = 1; if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements(); for (unsigned k=0, ke=numElems; k!=ke; ++k) { EVT tmpvt = vtparts[j]; if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType(); SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt, getParamSymbol(DAG, idx, tmpvt)); SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy, DAG.getConstant(sizesofar, getPointerTy())); theChains.push_back(DAG.getStore(Chain, dl, arg, addr, MachinePointerInfo(), false, false, 0)); sizesofar += tmpvt.getStoreSizeInBits()/8; ++idx; } } --idx; Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0], theChains.size()); InVals.push_back(localcopy); } } // Clang will check explicit VarArg and issue error if any. However, Clang // will let code with // implicit var arg like f() pass. // We treat this case as if the arg list is empty. //if (F.isVarArg()) { // assert(0 && "VarArg not supported yet!"); //} if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size())); return Chain; }
/// LowerFormalArguments - transform physical registers into virtual registers /// and generate load operations for arguments places on the stack. SDValue Cpu0TargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); Cpu0FunctionInfo *Cpu0FI = MF.getInfo<Cpu0FunctionInfo>(); Cpu0FI->setVarArgsFrameIndex(0); // Used with vargs to acumulate store chains. std::vector<SDValue> OutChains; // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Cpu0); Function::const_arg_iterator FuncArg = DAG.getMachineFunction().getFunction()->arg_begin(); int LastFI = 0;// Cpu0FI->LastInArgFI is 0 at the entry of this function. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) { CCValAssign &VA = ArgLocs[i]; EVT ValVT = VA.getValVT(); ISD::ArgFlagsTy Flags = Ins[i].Flags; bool IsRegLoc = VA.isRegLoc(); if (Flags.isByVal()) { assert(Flags.getByValSize() && "ByVal args of size 0 should have been ignored by front-end."); continue; } { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); // The stack pointer offset is relative to the caller stack frame. LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), true); // Create load nodes to retrieve arguments from the stack SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy()); InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(LastFI), false, false, false, 0)); } } Cpu0FI->setLastInArgFI(LastFI); #if 1 // All stores are grouped in one node to allow the matching between // the size of Ins and InVals. This only happens when on varg functions if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } #endif return Chain; }
static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, int &VarArgsBase, int &VarArgsOffset) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); std::vector<SDOperand> ArgValues; SDOperand Root = Op.getOperand(0); AddLiveIn(MF, Alpha::R29, &Alpha::GPRCRegClass); //GP AddLiveIn(MF, Alpha::R26, &Alpha::GPRCRegClass); //RA unsigned args_int[] = { Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; unsigned args_float[] = { Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { SDOperand argt; MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); SDOperand ArgVal; if (ArgNo < 6) { switch (ObjectVT) { default: cerr << "Unknown Type " << ObjectVT << "\n"; abort(); case MVT::f64: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_float[ArgNo], ObjectVT); break; case MVT::f32: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F4RCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_float[ArgNo], ObjectVT); break; case MVT::i64: args_int[ArgNo] = AddLiveIn(MF, args_int[ArgNo], &Alpha::GPRCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_int[ArgNo], MVT::i64); break; } } else { //more args // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(8, 8 * (ArgNo - 6)); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); } ArgValues.push_back(ArgVal); } // If the functions takes variable number of arguments, copy all regs to stack bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; if (isVarArg) { VarArgsOffset = (Op.Val->getNumValues()-1) * 8; std::vector<SDOperand> LS; for (int i = 0; i < 6; ++i) { if (MRegisterInfo::isPhysicalRegister(args_int[i])) args_int[i] = AddLiveIn(MF, args_int[i], &Alpha::GPRCRegClass); SDOperand argt = DAG.getCopyFromReg(Root, args_int[i], MVT::i64); int FI = MFI->CreateFixedObject(8, -8 * (6 - i)); if (i == 0) VarArgsBase = FI; SDOperand SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Root, argt, SDFI, NULL, 0)); if (MRegisterInfo::isPhysicalRegister(args_float[i])) args_float[i] = AddLiveIn(MF, args_float[i], &Alpha::F8RCRegClass); argt = DAG.getCopyFromReg(Root, args_float[i], MVT::f64); FI = MFI->CreateFixedObject(8, - 8 * (12 - i)); SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Root, argt, SDFI, NULL, 0)); } //Set up a token factor with all the stack traffic Root = DAG.getNode(ISD::TokenFactor, MVT::Other, &LS[0], LS.size()); } ArgValues.push_back(Root); // Return the new list of results. std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); }
/// LowerArguments - V8 uses a very simple ABI, where all values are passed in /// either one or two GPRs, including FP values. TODO: we should pass FP values /// in FP registers for fastcc functions. void SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG, SmallVectorImpl<SDValue> &ArgValues, DebugLoc dl) { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = 68; SDValue Root = DAG.getRoot(); std::vector<SDValue> OutChains; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT ObjectVT = getValueType(I->getType()); switch (ObjectVT.getSimpleVT()) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32); if (ObjectVT != MVT::i32) { unsigned AssertOp = ISD::AssertSext; Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg, DAG.getValueType(ObjectVT)); Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg); } ArgValues.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load; if (ObjectVT == MVT::i32) { Load = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0); } else { ISD::LoadExtType LoadOp = ISD::SEXTLOAD; // Sparc is big endian, so add an offset based on the ObjectVT. unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8); FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Root, FIPtr, NULL, 0, ObjectVT); Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load); } ArgValues.push_back(Load); } ArgOffset += 4; break; case MVT::f32: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR // FP value is passed in an integer register. unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32); Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg); ArgValues.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load = DAG.getLoad(MVT::f32, dl, Root, FIPtr, NULL, 0); ArgValues.push_back(Load); } ArgOffset += 4; break; case MVT::i64: case MVT::f64: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getUNDEF(ObjectVT)); } else { SDValue HiVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi); HiVal = DAG.getCopyFromReg(Root, dl, VRegHi, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); HiVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0); } SDValue LoVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo); LoVal = DAG.getCopyFromReg(Root, dl, VRegLo, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0); } // Compose the two halves together into an i64 unit. SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); // If we want a double, do a bit convert. if (ObjectVT == MVT::f64) WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue); ArgValues.push_back(WholeValue); } ArgOffset += 8; break; } } // Store remaining ArgRegs to the stack if this is a varargs function. if (F.isVarArg()) { // Remember the vararg offset for the va_start implementation. VarArgsFrameOffset = ArgOffset; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg, VReg); SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, NULL, 0)); ArgOffset += 4; } } if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size())); }