void contactPointProcess(SiconosVector& answer, const Interaction& inter, const T& rel) { answer.resize(14); const SiconosVector& posa = *rel.pc1(); const SiconosVector& posb = *rel.pc2(); const SiconosVector& nc = *rel.nc(); const SimpleMatrix& jachqT = *rel.jachqT(); double id = inter.number(); double mu = ask<ForMu>(*inter.nslaw()); SiconosVector cf(jachqT.size(1)); prod(*inter.lambda(1), jachqT, cf, true); answer.setValue(0, mu); DEBUG_PRINTF("posa(0)=%g\n", posa(0)); DEBUG_PRINTF("posa(1)=%g\n", posa(1)); DEBUG_PRINTF("posa(2)=%g\n", posa(2)); answer.setValue(1, posa(0)); answer.setValue(2, posa(1)); answer.setValue(3, posa(2)); answer.setValue(4, posb(0)); answer.setValue(5, posb(1)); answer.setValue(6, posb(2)); answer.setValue(7, nc(0)); answer.setValue(8, nc(1)); answer.setValue(9, nc(2)); answer.setValue(10, cf(0)); answer.setValue(11, cf(1)); answer.setValue(12, cf(2)); answer.setValue(13, id); };
void FirstOrderType1R::computeh(double time, SiconosVector& x, SiconosVector& z, SiconosVector& y) { assert(_pluginh && "FirstOrderType1R::computeOutput() is not linked to a plugin function"); ((Type1Ptr)(_pluginh->fPtr))(x.size(), &(x)(0), y.size(), &(y)(0), z.size(), &(z)(0)); }
void FirstOrderType1R::computeg(double time, SiconosVector& lambda, SiconosVector& z, SiconosVector& r) { assert(_pluging && "FirstOrderType1R::computeInput() is not linked to a plugin function"); ((Type1Ptr)(_pluging->fPtr))(lambda.size(), &(lambda)(0), r.size(), &(r)(0), z.size(), &(z)(0)); }
void SphereNEDSSphereNEDSR::computeh(double time, BlockVector& q0, SiconosVector& y) { double q_0 = q0(0); double q_1 = q0(1); double q_2 = q0(2); double q_7 = q0(7); double q_8 = q0(8); double q_9 = q0(9); y.setValue(0, distance(q_0, q_1, q_2, r1, q_7, q_8, q_9, r2)); //Approximation _Pc1=_Pc2 _Pc1->setValue(0, (r1 * q_0 + r2 * q_7) / (r1 + r2)); _Pc1->setValue(1, (r1 * q_1 + r2 * q_8) / (r1 + r2)); _Pc1->setValue(2, (r1 * q_2 + r2 * q_9) / (r1 + r2)); _Pc2->setValue(0, (r1 * q_0 + r2 * q_7) / (r1 + r2)); _Pc2->setValue(1, (r1 * q_1 + r2 * q_8) / (r1 + r2)); _Pc2->setValue(2, (r1 * q_2 + r2 * q_9) / (r1 + r2)); _Nc->setValue(0, (q_0 - q_7) / (y.getValue(0) + r1pr2)); _Nc->setValue(1, (q_1 - q_8) / (y.getValue(0) + r1pr2)); _Nc->setValue(2, (q_2 - q_9) / (y.getValue(0) + r1pr2)); //std::cout<<" SphereNEDSSphereNEDSR::computeh dist:"<<y->getValue(0)<<"\n"; //std::cout<<"_Pc:\n"; //_Pc->display(); //std::cout<<"_Nc:\n"; //_Nc->display(); }
void SimpleMatrix::SolveByLeastSquares(SiconosVector &B) { if (B.isBlock()) SiconosMatrixException::selfThrow("SimpleMatrix::SolveByLeastSquares(SiconosVector &B) failed. Not yet implemented for V being a BlockVector."); DenseMat tmpB(B.size(), 1); ublas::column(tmpB, 0) = *(B.dense()); // Conversion of vector to matrix. Temporary solution. int info = 0; #ifdef USE_OPTIMAL_WORKSPACE info += lapack::gels(*mat.Dense, tmpB, lapack::optimal_workspace()); #endif #ifdef USE_MINIMAL_WORKSPACE info += lapack::gels(*mat.Dense, tmpB, lapack::minimal_workspace()); #endif if (info != 0) { std::cout << "info = " << info << std::endl; SiconosMatrixException::selfThrow("SimpleMatrix::SolveByLeastSquares failed."); } else { noalias(*(B.dense())) = ublas::column(tmpB, 0); } }
static void normalize(SiconosVector& q, unsigned int i) { q.setValue(i, fmod(q.getValue(i), _2PI)); assert(fabs(q.getValue(i)) - std::numeric_limits<double>::epsilon() >= 0.); assert(fabs(q.getValue(i)) < _2PI); }
void FirstOrderLinearR::computee(double time, SiconosVector& z, SiconosVector& e) { if (_plugine->fPtr) { ((FOVecPtr) _plugine->fPtr)(time, e.size(), &(e)(0), z.size(), &(z)(0)); } }
void FirstOrderType1R::computeJachx(double time, SiconosVector& x, SiconosVector& z, SimpleMatrix& C) { // assert(_pluginJachx && "FirstOrderType1R::computeJacobianH() failed; not linked to a plug-in function."); ((Type1Ptr)(_pluginJachx->fPtr))(x.size(), &(x)(0), C.size(0), C.getArray(), z.size(), &(z)(0)); }
void LagrangianCompliantR::computeJachlambda(double time, SiconosVector& q0, SiconosVector& lambda, SiconosVector& z) { if (_pluginJachlambda->fPtr) { // get vector lambda of the current interaction ((FPtr2)_pluginJachlambda->fPtr)(q0.size(), &(q0)(0), lambda.size(), &(lambda)(0), &(*_jachlambda)(0, 0), z.size(), &(z)(0)); // Copy data that might have been changed in the plug-in call. } }
void SimpleMatrix::PLUForwardBackwardInPlace(SiconosVector &B) { if (B.isBlock()) SiconosMatrixException::selfThrow("SimpleMatrix PLUForwardBackwardInPlace(V) failed. Not yet implemented for V being a BlockVector."); DenseMat tmpB(B.size(), 1); ublas::column(tmpB, 0) = *(B.dense()); // Conversion of vector to matrix. Temporary solution. int info; if (_num == 1) { if (!_isPLUFactorized) // call gesv => LU-factorize+solve { // solve system: if (!_ipiv) _ipiv.reset(new VInt(size(0))); else _ipiv->resize(size(0)); info = lapack::gesv(*mat.Dense, *_ipiv, tmpB); _isPLUFactorized = true; /* ublas::matrix<double> COPY(*mat.Dense); ublas::vector<double> S(std::max(size(0),size(1))); ublas::matrix<double, ublas::column_major> U(size(0),size(1)); ublas::matrix<double, ublas::column_major> VT(size(0),size(1)); int ierr = lapack::gesdd(COPY, S, U, VT); printf("info = %d, ierr = %d, emax = %f, emin = %f , cond = %f\n",info,ierr,S(0),S(2),S(0)/S(2)); */ // B now contains solution: } else // call getrs: only solve using previous lu-factorization info = lapack::getrs(*mat.Dense, *_ipiv, tmpB); } else { if (!_isPLUFactorized) // call first PLUFactorizationInPlace { PLUFactorizationInPlace(); } // and then solve inplace_solve(*sparse(), tmpB, ublas::lower_tag()); inplace_solve(ublas::trans(*sparse()), tmpB, ublas::upper_tag()); info = 0; } if (info != 0) SiconosMatrixException::selfThrow("SimpleMatrix::PLUForwardBackwardInPlace failed."); else { noalias(*(B.dense())) = ublas::column(tmpB, 0); } }
void LagrangianCompliantR::computeh(double time, SiconosVector& q0, SiconosVector& lambda, SiconosVector& z, SiconosVector& y) { if (_pluginh->fPtr) { // get vector y of the current interaction // Warning: temporary method to have contiguous values in memory, copy of block to simple. ((FPtr2)(_pluginh->fPtr))(q0.size(), &(q0)(0), y.size(), &(lambda)(0), &(y)(0), z.size(), &(z)(0)); } }
void LagrangianCompliantR::computeJachq(double time, SiconosVector& q0, SiconosVector& lambda, SiconosVector& z) { if (_pluginJachq->fPtr) { // Warning: temporary method to have contiguous values in memory, copy of block to simple. // get vector lambda of the current interaction ((FPtr2)(_pluginJachq->fPtr))(q0.size(), &(q0)(0), lambda.size(), &(lambda)(0), &(*_jachq)(0, 0), z.size(), &(z)(0)); // Copy data that might have been changed in the plug-in call. } }
void LagrangianRheonomousR::computeh(double time, SiconosVector& q, SiconosVector& z, SiconosVector& y) { DEBUG_PRINT(" LagrangianRheonomousR::computeh(double time,Interaction& inter, SP::BlockVector q, SP::BlockVector z)"); if (_pluginh) { // arg= time. Unused in this function but required for interface. if (_pluginh->fPtr) { ((FPtr4)(_pluginh->fPtr))(q.size(), &(q)(0), time, y.size(), &(y)(0), z.size(), &(z)(0)); } } }
void FirstOrderLinearR::computeC(double time, SiconosVector& z, SimpleMatrix& C) { if (_pluginJachx->fPtr) { ((FOMatPtr1)(_pluginJachx->fPtr))(time, C.size(0), C.size(1), &(C)(0, 0), z.size(), &(z)(0)); } }
void computeh(double time, BlockVector& q0, SiconosVector& y) { std::cout <<"my_NewtonEulerR:: computeh" << std:: endl; std::cout <<"q0.size() = " << q0.size() << std:: endl; double height = q0.getValue(0) - _sBallRadius - q0.getValue(7); // std::cout <<"my_NewtonEulerR:: computeh _jachq" << std:: endl; // _jachq->display(); y.setValue(0, height); _Nc->setValue(0, 1); _Nc->setValue(1, 0); _Nc->setValue(2, 0); _Pc1->setValue(0, q0.getValue(0) - _sBallRadius); _Pc1->setValue(1, q0.getValue(1)); _Pc1->setValue(2, q0.getValue(2)); _Pc2->setValue(0,q0.getValue(7)); _Pc2->setValue(1,q0.getValue(8)); _Pc2->setValue(2,q0.getValue(9)); //printf("my_NewtonEulerR N, Pc\n"); _Nc->display(); _Pc1->display(); _Pc2->display(); std::cout <<"my_NewtonEulerR:: computeh ends" << std:: endl; }
void SiconosVector::setVector(unsigned int , const SiconosVector& newV) { if (newV.size() != size()) SiconosVectorException::selfThrow("SiconosVector::setVector(num,v), unconsistent sizes."); *this = newV ; }
void ControlLinearAdditionalTermsED::addSmoothTerms(DynamicalSystemsGraph& DSG0, const DynamicalSystemsGraph::VDescriptor& dsgVD, const double t, SiconosVector& xdot) { // check whether we have a system with a control input if (DSG0.u.hasKey(dsgVD)) { if (DSG0.B.hasKey(dsgVD)) { prod(DSG0.B.getRef(dsgVD), DSG0.u.getRef(dsgVD), xdot, false); // xdot += B*u } else if (DSG0.pluginU.hasKey(dsgVD)) { DynamicalSystem& ds = *DSG0.bundle(dsgVD); SiconosVector& u = DSG0.u.getRef(dsgVD); SiconosVector& tmpXdot = DSG0.tmpXdot.getRef(dsgVD); ((AdditionalTermsEDfctU)DSG0.pluginU.getRef(dsgVD).fPtr)(t, xdot.size(), ds.getx().getArray(), u.size(), u.getArray(), tmpXdot.getArray(), ds.getz().size(), ds.getz().getArray()); xdot += tmpXdot; // xdot += g(x, u) } else { RuntimeException::selfThrow("ControlLinearAdditionalTermsED :: input u but no B nor pluginU"); } } // check whether the DynamicalSystem is an Observer if (DSG0.e.hasKey(dsgVD)) { assert(DSG0.L.hasKey(dsgVD)); prod(*DSG0.L[dsgVD], *DSG0.e[dsgVD], xdot, false); // xdot += -L*e } }
void FirstOrderLinearR::computeB(double time, SiconosVector& z, SimpleMatrix& B) { if (_pluginJacglambda->fPtr) { ((FOMatPtr1) _pluginJacglambda->fPtr)(time, B.size(0), B.size(1), &(B)(0, 0), z.size(), &(z)(0)); } }
void FirstOrderLinearR::computeD(double time, SiconosVector& z, SimpleMatrix& D) { if (_pluginJachlambda->fPtr) { ((FOMatPtr1)(_pluginJachlambda->fPtr))(time, D.size(0), D.size(1), &(D)(0, 0), z.size(), &(z)(0)); } }
void LagrangianRheonomousR::computehDot(double time, SiconosVector& q, SiconosVector& z) { if (_pluginhDot && _pluginhDot->fPtr) { ((FPtr4)(_pluginhDot->fPtr))(q.size(), &(q)(0), time, _hDot->size(), &(*_hDot)(0), z.size(), &(z)(0)); } }
void FirstOrderLinearR::computeF(double time, SiconosVector& z, SimpleMatrix& F) { if (_pluginf->fPtr) { ((FOMatPtr1)(_pluginf->fPtr))(time, F.size(0), F.size(1), &(F)(0, 0), z.size(), &(z)(0)); } }
void SiconosVector::toBlock(SiconosVector& vOut, unsigned int sizeB, unsigned int startIn, unsigned int startOut) const { // To copy a subBlock of the vector (from position startIn to startIn+sizeB) into vOut (from pos. startOut to startOut+sizeB). // Check dim ... assert(startIn < size() && "vector toBlock(v1,v2,...): start position in input vector is out of range."); assert(startOut < vOut.size() && "vector toBlock(v1,v2,...): start position in output vector is out of range."); assert(startIn + sizeB <= size() && "vector toBlock(v1,v2,...): end position in input vector is out of range."); assert(startOut + sizeB <= vOut.size() && "vector toBlock(v1,v2,...): end position in output vector is out of range."); unsigned int endOut = startOut + sizeB; unsigned int numIn = num(); unsigned int numOut = vOut.num(); if (numIn == numOut) { if (numIn == 1) // vIn / vOut are Dense noalias(ublas::subrange(*vOut.dense(), startOut, endOut)) = ublas::subrange(*vect.Dense, startIn, startIn + sizeB); else // if(numIn == 4)// vIn / vOut are Sparse noalias(ublas::subrange(*vOut.sparse(), startOut, endOut)) = ublas::subrange(*vect.Sparse, startIn, startIn + sizeB); } else // vIn and vout of different types ... { if (numIn == 1) // vIn Dense noalias(ublas::subrange(*vOut.sparse(), startOut, endOut)) = ublas::subrange(*vect.Dense, startIn, startIn + sizeB); else // if(numIn == 4)// vIn Sparse noalias(ublas::subrange(*vOut.dense(), startOut, endOut)) = ublas::subrange(*vect.Sparse, startIn, startIn + sizeB); } }
/*y = h(X)*/ void NonlinearRelationWithSignInversed::computeh(double t, SiconosVector& x, SiconosVector& lambda, SiconosVector& y) { #ifdef SICONOS_DEBUG std::cout << "******** NonlinearRelationWithSignInversed::computeh computeh at " << t << std::endl; #endif y.setValue(0, x(0) - 4); y.setValue(1, x(1) - 4); y.setValue(2, x(0) - 8); y.setValue(3, x(1) - 8); #ifdef SICONOS_DEBUG std::cout << "modif heval : \n"; y.display(); #endif }
void SiconosVector::subBlock(unsigned int index, const SiconosVector& vIn) { // Add vIn from the current vector, starting from position "index". // vIn may be a BlockVector. // if ( num != 1 ) SiconosVectorException::selfThrow("SiconosVector::subBlock : vector should be dense"); unsigned int end = vIn.size(); if ((index + end) > size()) SiconosVectorException::selfThrow("SiconosVector::subBlock : invalid ranges"); unsigned int numVin = vIn.num(); if (numVin != num()) SiconosVectorException::selfThrow("SiconosVector::subBlock : inconsistent types."); if (_dense) noalias(ublas::subrange(*vect.Dense, index, index + end)) -= *vIn.dense(); else noalias(ublas::subrange(*vect.Sparse, index, index + end)) -= *vIn.sparse(); }
/*y = h(X)*/ void NonlinearRelationWithSign::computeh(double t, SiconosVector& x, SiconosVector& lambda, SiconosVector& y) { //SiconosVector& lambda = *inter.lambda(0); #ifdef SICONOS_DEBUG std::cout << "******** NonlinearRelationWithSign::computeh computeh at " << t << std::endl; #endif y.setValue(0, 4.0 - x(0)); y.setValue(1, 4.0 - x(1)); y.setValue(2, 8.0 - x(0)); y.setValue(3, 8.0 - x(1)); #ifdef SICONOS_DEBUG std::cout << "modif heval : \n"; y.display(); #endif }
// x block, y siconos void private_prod(const SiconosMatrix& A, unsigned int startRow, const SiconosVector& x, SiconosVector& y, bool init) { assert(!(A.isPLUFactorized()) && "A is PLUFactorized in prod !!"); // Computes y = subA *x (or += if init = false), subA being a sub-matrix of A, between el. of index (row) startRow and startRow + sizeY if (init) // y = subA * x , else y += subA * x y.zero(); private_addprod(A, startRow, 0, x, y); }
void SiconosVector::setBlock(unsigned int index, const SiconosVector& vIn) { // Set current vector elements, starting from position "index", to the values of vector vIn // Exceptions ... assert(&vIn != this && "SiconosVector::this->setBlock(pos,vIn): vIn = this."); assert(index < size() && "SiconosVector::setBlock : invalid ranges"); unsigned int end = vIn.size() + index; assert(end <= size() && "SiconosVector::setBlock : invalid ranges"); assert (vIn.num() == num() && "SiconosVector::setBlock: inconsistent types."); if (_dense) noalias(ublas::subrange(*vect.Dense, index, end)) = *vIn.dense(); else noalias(ublas::subrange(*vect.Sparse, index, end)) = *vIn.sparse(); }
SiconosVector::SiconosVector(const SiconosVector& v1, const SiconosVector& v2) { unsigned int size1 = v1.size(); if (ask<IsDense>(v1) && ask<IsDense>(v2)) { _dense = true; vect.Dense = new DenseVect(size1 + v2.size()); } else if (ask<IsSparse>(v1) && ask<IsSparse>(v2)) { _dense = false; vect.Sparse = new SparseVect(size1 + v2.size()); } else { SiconosVectorException::selfThrow("SiconosVector::SiconosVector :: mixed dense and sparse vector detected"); } setBlock(0, v1); setBlock(size1, v2); }
void BulletR::computeh(double time, BlockVector& q0, SiconosVector& y) { DEBUG_BEGIN("BulletR::computeh(...)\n"); NewtonEulerR::computeh(time, q0, y); DEBUG_PRINT("start of computeh\n"); btVector3 posa = _contactPoints->getPositionWorldOnA(); btVector3 posb = _contactPoints->getPositionWorldOnB(); if (_flip) { posa = _contactPoints->getPositionWorldOnB(); posb = _contactPoints->getPositionWorldOnA(); } (*pc1())(0) = posa[0]; (*pc1())(1) = posa[1]; (*pc1())(2) = posa[2]; (*pc2())(0) = posb[0]; (*pc2())(1) = posb[1]; (*pc2())(2) = posb[2]; { y.setValue(0, _contactPoints->getDistance()); (*nc())(0) = _contactPoints->m_normalWorldOnB[0] * (_flip ? -1 : 1); (*nc())(1) = _contactPoints->m_normalWorldOnB[1] * (_flip ? -1 : 1); (*nc())(2) = _contactPoints->m_normalWorldOnB[2] * (_flip ? -1 : 1); } DEBUG_PRINTF("distance : %g\n", y.getValue(0)); DEBUG_PRINTF("position on A : %g,%g,%g\n", posa[0], posa[1], posa[2]); DEBUG_PRINTF("position on B : %g,%g,%g\n", posb[0], posb[1], posb[2]); DEBUG_PRINTF("normal on B : %g,%g,%g\n", (*nc())(0), (*nc())(1), (*nc())(2)); DEBUG_END("BulletR::computeh(...)\n"); }
void LagrangianRheonomousR::computeJachq(double time, SiconosVector& q, SiconosVector& z) { // Note that second input arg is useless. if (_pluginJachq->fPtr) { // Warning: temporary method to have contiguous values in // memory, copy of block to simple. ((FPtr4)(_pluginJachq->fPtr))(q.size(), &(q)(0), time, _jachq->size(0), &(*_jachq)(0, 0), z.size(), &(z)(0)); // Copy data that might have been changed in the plug-in call. } // else nothing. }