// This is the js::Native for functions exported by an asm.js module. static bool CallAsmJS(JSContext *cx, unsigned argc, Value *vp) { CallArgs callArgs = CallArgsFromVp(argc, vp); RootedFunction callee(cx, &callArgs.callee().as<JSFunction>()); AsmJSModule &module = FunctionToEnclosingModule(callee); const AsmJSModule::ExportedFunction &func = FunctionToExportedFunction(callee, module); // The heap-changing function is a special-case and is implemented by C++. if (func.isChangeHeap()) return ChangeHeap(cx, module, callArgs); // Enable/disable profiling in the asm.js module to match the current global // profiling state. Don't do this if the module is already active on the // stack since this would leave the module in a state where profiling is // enabled but the stack isn't unwindable. if (module.profilingEnabled() != cx->runtime()->spsProfiler.enabled() && !module.active()) module.setProfilingEnabled(cx->runtime()->spsProfiler.enabled(), cx); // The calling convention for an external call into asm.js is to pass an // array of 16-byte values where each value contains either a coerced int32 // (in the low word), a double value (in the low dword) or a SIMD vector // value, with the coercions specified by the asm.js signature. The // external entry point unpacks this array into the system-ABI-specified // registers and stack memory and then calls into the internal entry point. // The return value is stored in the first element of the array (which, // therefore, must have length >= 1). js::Vector<AsmJSModule::EntryArg, 8> coercedArgs(cx); if (!coercedArgs.resize(Max<size_t>(1, func.numArgs()))) return false; RootedValue v(cx); for (unsigned i = 0; i < func.numArgs(); ++i) { v = i < callArgs.length() ? callArgs[i] : UndefinedValue(); switch (func.argCoercion(i)) { case AsmJS_ToInt32: if (!ToInt32(cx, v, (int32_t*)&coercedArgs[i])) return false; break; case AsmJS_ToNumber: if (!ToNumber(cx, v, (double*)&coercedArgs[i])) return false; break; case AsmJS_FRound: if (!RoundFloat32(cx, v, (float *)&coercedArgs[i])) return false; break; case AsmJS_ToInt32x4: { SimdConstant simd; if (!ToSimdConstant<Int32x4>(cx, v, &simd)) return false; memcpy(&coercedArgs[i], simd.asInt32x4(), Simd128DataSize); break; } case AsmJS_ToFloat32x4: { SimdConstant simd; if (!ToSimdConstant<Float32x4>(cx, v, &simd)) return false; memcpy(&coercedArgs[i], simd.asFloat32x4(), Simd128DataSize); break; } } } // The correct way to handle this situation would be to allocate a new range // of PROT_NONE memory and module.changeHeap to this memory. That would // cause every access to take the out-of-bounds signal-handler path which // does the right thing. For now, just throw an out-of-memory exception // since these can technically pop out anywhere and the full fix may // actually OOM when trying to allocate the PROT_NONE memory. if (module.hasDetachedHeap()) { JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_OUT_OF_MEMORY); return false; } { // Push an AsmJSActivation to describe the asm.js frames we're about to // push when running this module. Additionally, push a JitActivation so // that the optimized asm.js-to-Ion FFI call path (which we want to be // very fast) can avoid doing so. The JitActivation is marked as // inactive so stack iteration will skip over it. AsmJSActivation activation(cx, module); JitActivation jitActivation(cx, /* active */ false); // Call the per-exported-function trampoline created by GenerateEntry. AsmJSModule::CodePtr enter = module.entryTrampoline(func); if (!CALL_GENERATED_2(enter, coercedArgs.begin(), module.globalData())) return false; } if (callArgs.isConstructing()) { // By spec, when a function is called as a constructor and this function // returns a primary type, which is the case for all asm.js exported // functions, the returned value is discarded and an empty object is // returned instead. PlainObject *obj = NewBuiltinClassInstance<PlainObject>(cx); callArgs.rval().set(ObjectValue(*obj)); return true; } JSObject *simdObj; switch (func.returnType()) { case AsmJSModule::Return_Void: callArgs.rval().set(UndefinedValue()); break; case AsmJSModule::Return_Int32: callArgs.rval().set(Int32Value(*(int32_t*)&coercedArgs[0])); break; case AsmJSModule::Return_Double: callArgs.rval().set(NumberValue(*(double*)&coercedArgs[0])); break; case AsmJSModule::Return_Int32x4: simdObj = CreateSimd<Int32x4>(cx, (int32_t*)&coercedArgs[0]); if (!simdObj) return false; callArgs.rval().set(ObjectValue(*simdObj)); break; case AsmJSModule::Return_Float32x4: simdObj = CreateSimd<Float32x4>(cx, (float*)&coercedArgs[0]); if (!simdObj) return false; callArgs.rval().set(ObjectValue(*simdObj)); break; } return true; }
static bool ValidateGlobalVariable(JSContext *cx, const AsmJSModule &module, AsmJSModule::Global &global, HandleValue importVal) { MOZ_ASSERT(global.which() == AsmJSModule::Global::Variable); void *datum = module.globalVarToGlobalDatum(global); switch (global.varInitKind()) { case AsmJSModule::Global::InitConstant: { const AsmJSNumLit &lit = global.varInitNumLit(); switch (lit.which()) { case AsmJSNumLit::Fixnum: case AsmJSNumLit::NegativeInt: case AsmJSNumLit::BigUnsigned: *(int32_t *)datum = lit.scalarValue().toInt32(); break; case AsmJSNumLit::Double: *(double *)datum = lit.scalarValue().toDouble(); break; case AsmJSNumLit::Float: *(float *)datum = static_cast<float>(lit.scalarValue().toDouble()); break; case AsmJSNumLit::Int32x4: memcpy(datum, lit.simdValue().asInt32x4(), Simd128DataSize); break; case AsmJSNumLit::Float32x4: memcpy(datum, lit.simdValue().asFloat32x4(), Simd128DataSize); break; case AsmJSNumLit::OutOfRangeInt: MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("OutOfRangeInt isn't valid in the first place"); } break; } case AsmJSModule::Global::InitImport: { RootedPropertyName field(cx, global.varImportField()); RootedValue v(cx); if (!GetDataProperty(cx, importVal, field, &v)) return false; if (!v.isPrimitive() && !HasPureCoercion(cx, v)) return LinkFail(cx, "Imported values must be primitives"); SimdConstant simdConstant; switch (global.varInitCoercion()) { case AsmJS_ToInt32: if (!ToInt32(cx, v, (int32_t *)datum)) return false; break; case AsmJS_ToNumber: if (!ToNumber(cx, v, (double *)datum)) return false; break; case AsmJS_FRound: if (!RoundFloat32(cx, v, (float *)datum)) return false; break; case AsmJS_ToInt32x4: if (!ToSimdConstant<Int32x4>(cx, v, &simdConstant)) return false; memcpy(datum, simdConstant.asInt32x4(), Simd128DataSize); break; case AsmJS_ToFloat32x4: if (!ToSimdConstant<Float32x4>(cx, v, &simdConstant)) return false; memcpy(datum, simdConstant.asFloat32x4(), Simd128DataSize); break; } break; } } return true; }
bool Instance::callExport(JSContext* cx, uint32_t funcIndex, CallArgs args) { if (!cx->compartment()->wasm.ensureProfilingState(cx)) return false; const FuncExport& func = metadata().lookupFuncExport(funcIndex); // The calling convention for an external call into wasm is to pass an // array of 16-byte values where each value contains either a coerced int32 // (in the low word), a double value (in the low dword) or a SIMD vector // value, with the coercions specified by the wasm signature. The external // entry point unpacks this array into the system-ABI-specified registers // and stack memory and then calls into the internal entry point. The return // value is stored in the first element of the array (which, therefore, must // have length >= 1). Vector<ExportArg, 8> exportArgs(cx); if (!exportArgs.resize(Max<size_t>(1, func.sig().args().length()))) return false; RootedValue v(cx); for (unsigned i = 0; i < func.sig().args().length(); ++i) { v = i < args.length() ? args[i] : UndefinedValue(); switch (func.sig().arg(i)) { case ValType::I32: if (!ToInt32(cx, v, (int32_t*)&exportArgs[i])) return false; break; case ValType::I64: if (!JitOptions.wasmTestMode) { JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_WASM_BAD_I64); return false; } if (!ReadI64Object(cx, v, (int64_t*)&exportArgs[i])) return false; break; case ValType::F32: if (JitOptions.wasmTestMode && v.isObject()) { if (!ReadCustomFloat32NaNObject(cx, v, (float*)&exportArgs[i])) return false; break; } if (!RoundFloat32(cx, v, (float*)&exportArgs[i])) return false; break; case ValType::F64: if (JitOptions.wasmTestMode && v.isObject()) { if (!ReadCustomDoubleNaNObject(cx, v, (double*)&exportArgs[i])) return false; break; } if (!ToNumber(cx, v, (double*)&exportArgs[i])) return false; break; case ValType::I8x16: { SimdConstant simd; if (!ToSimdConstant<Int8x16>(cx, v, &simd)) return false; memcpy(&exportArgs[i], simd.asInt8x16(), Simd128DataSize); break; } case ValType::I16x8: { SimdConstant simd; if (!ToSimdConstant<Int16x8>(cx, v, &simd)) return false; memcpy(&exportArgs[i], simd.asInt16x8(), Simd128DataSize); break; } case ValType::I32x4: { SimdConstant simd; if (!ToSimdConstant<Int32x4>(cx, v, &simd)) return false; memcpy(&exportArgs[i], simd.asInt32x4(), Simd128DataSize); break; } case ValType::F32x4: { SimdConstant simd; if (!ToSimdConstant<Float32x4>(cx, v, &simd)) return false; memcpy(&exportArgs[i], simd.asFloat32x4(), Simd128DataSize); break; } case ValType::B8x16: { SimdConstant simd; if (!ToSimdConstant<Bool8x16>(cx, v, &simd)) return false; // Bool8x16 uses the same representation as Int8x16. memcpy(&exportArgs[i], simd.asInt8x16(), Simd128DataSize); break; } case ValType::B16x8: { SimdConstant simd; if (!ToSimdConstant<Bool16x8>(cx, v, &simd)) return false; // Bool16x8 uses the same representation as Int16x8. memcpy(&exportArgs[i], simd.asInt16x8(), Simd128DataSize); break; } case ValType::B32x4: { SimdConstant simd; if (!ToSimdConstant<Bool32x4>(cx, v, &simd)) return false; // Bool32x4 uses the same representation as Int32x4. memcpy(&exportArgs[i], simd.asInt32x4(), Simd128DataSize); break; } case ValType::Limit: MOZ_CRASH("Limit"); } } { // Push a WasmActivation to describe the wasm frames we're about to push // when running this module. Additionally, push a JitActivation so that // the optimized wasm-to-Ion FFI call path (which we want to be very // fast) can avoid doing so. The JitActivation is marked as inactive so // stack iteration will skip over it. WasmActivation activation(cx); JitActivation jitActivation(cx, /* active */ false); // Call the per-exported-function trampoline created by GenerateEntry. auto funcPtr = JS_DATA_TO_FUNC_PTR(ExportFuncPtr, codeBase() + func.entryOffset()); if (!CALL_GENERATED_2(funcPtr, exportArgs.begin(), &tlsData_)) return false; } if (args.isConstructing()) { // By spec, when a function is called as a constructor and this function // returns a primary type, which is the case for all wasm exported // functions, the returned value is discarded and an empty object is // returned instead. PlainObject* obj = NewBuiltinClassInstance<PlainObject>(cx); if (!obj) return false; args.rval().set(ObjectValue(*obj)); return true; } void* retAddr = &exportArgs[0]; JSObject* retObj = nullptr; switch (func.sig().ret()) { case ExprType::Void: args.rval().set(UndefinedValue()); break; case ExprType::I32: args.rval().set(Int32Value(*(int32_t*)retAddr)); break; case ExprType::I64: if (!JitOptions.wasmTestMode) { JS_ReportErrorNumber(cx, GetErrorMessage, nullptr, JSMSG_WASM_BAD_I64); return false; } retObj = CreateI64Object(cx, *(int64_t*)retAddr); if (!retObj) return false; break; case ExprType::F32: if (JitOptions.wasmTestMode && IsNaN(*(float*)retAddr)) { retObj = CreateCustomNaNObject(cx, (float*)retAddr); if (!retObj) return false; break; } args.rval().set(NumberValue(*(float*)retAddr)); break; case ExprType::F64: if (JitOptions.wasmTestMode && IsNaN(*(double*)retAddr)) { retObj = CreateCustomNaNObject(cx, (double*)retAddr); if (!retObj) return false; break; } args.rval().set(NumberValue(*(double*)retAddr)); break; case ExprType::I8x16: retObj = CreateSimd<Int8x16>(cx, (int8_t*)retAddr); if (!retObj) return false; break; case ExprType::I16x8: retObj = CreateSimd<Int16x8>(cx, (int16_t*)retAddr); if (!retObj) return false; break; case ExprType::I32x4: retObj = CreateSimd<Int32x4>(cx, (int32_t*)retAddr); if (!retObj) return false; break; case ExprType::F32x4: retObj = CreateSimd<Float32x4>(cx, (float*)retAddr); if (!retObj) return false; break; case ExprType::B8x16: retObj = CreateSimd<Bool8x16>(cx, (int8_t*)retAddr); if (!retObj) return false; break; case ExprType::B16x8: retObj = CreateSimd<Bool16x8>(cx, (int16_t*)retAddr); if (!retObj) return false; break; case ExprType::B32x4: retObj = CreateSimd<Bool32x4>(cx, (int32_t*)retAddr); if (!retObj) return false; break; case ExprType::Limit: MOZ_CRASH("Limit"); } if (retObj) args.rval().set(ObjectValue(*retObj)); return true; }
bool Module::callExport(JSContext* cx, uint32_t exportIndex, CallArgs args) { MOZ_ASSERT(dynamicallyLinked_); const Export& exp = exports()[exportIndex]; // Enable/disable profiling in the Module to match the current global // profiling state. Don't do this if the Module is already active on the // stack since this would leave the Module in a state where profiling is // enabled but the stack isn't unwindable. if (profilingEnabled() != cx->runtime()->spsProfiler.enabled() && !activation()) { if (!setProfilingEnabled(cx, cx->runtime()->spsProfiler.enabled())) return false; } // The calling convention for an external call into wasm is to pass an // array of 16-byte values where each value contains either a coerced int32 // (in the low word), a double value (in the low dword) or a SIMD vector // value, with the coercions specified by the wasm signature. The external // entry point unpacks this array into the system-ABI-specified registers // and stack memory and then calls into the internal entry point. The return // value is stored in the first element of the array (which, therefore, must // have length >= 1). Vector<Module::EntryArg, 8> coercedArgs(cx); if (!coercedArgs.resize(Max<size_t>(1, exp.sig().args().length()))) return false; RootedValue v(cx); for (unsigned i = 0; i < exp.sig().args().length(); ++i) { v = i < args.length() ? args[i] : UndefinedValue(); switch (exp.sig().arg(i)) { case ValType::I32: if (!ToInt32(cx, v, (int32_t*)&coercedArgs[i])) return false; break; case ValType::I64: MOZ_CRASH("int64"); case ValType::F32: if (!RoundFloat32(cx, v, (float*)&coercedArgs[i])) return false; break; case ValType::F64: if (!ToNumber(cx, v, (double*)&coercedArgs[i])) return false; break; case ValType::I32x4: { SimdConstant simd; if (!ToSimdConstant<Int32x4>(cx, v, &simd)) return false; memcpy(&coercedArgs[i], simd.asInt32x4(), Simd128DataSize); break; } case ValType::F32x4: { SimdConstant simd; if (!ToSimdConstant<Float32x4>(cx, v, &simd)) return false; memcpy(&coercedArgs[i], simd.asFloat32x4(), Simd128DataSize); break; } case ValType::B32x4: { SimdConstant simd; if (!ToSimdConstant<Bool32x4>(cx, v, &simd)) return false; // Bool32x4 uses the same representation as Int32x4. memcpy(&coercedArgs[i], simd.asInt32x4(), Simd128DataSize); break; } case ValType::Limit: MOZ_CRASH("Limit"); } } { // Push a WasmActivation to describe the wasm frames we're about to push // when running this module. Additionally, push a JitActivation so that // the optimized wasm-to-Ion FFI call path (which we want to be very // fast) can avoid doing so. The JitActivation is marked as inactive so // stack iteration will skip over it. WasmActivation activation(cx, *this); JitActivation jitActivation(cx, /* active */ false); // Call the per-exported-function trampoline created by GenerateEntry. auto entry = JS_DATA_TO_FUNC_PTR(EntryFuncPtr, code() + exp.stubOffset()); if (!CALL_GENERATED_2(entry, coercedArgs.begin(), globalData())) return false; } if (args.isConstructing()) { // By spec, when a function is called as a constructor and this function // returns a primary type, which is the case for all wasm exported // functions, the returned value is discarded and an empty object is // returned instead. PlainObject* obj = NewBuiltinClassInstance<PlainObject>(cx); if (!obj) return false; args.rval().set(ObjectValue(*obj)); return true; } JSObject* simdObj; switch (exp.sig().ret()) { case ExprType::Void: args.rval().set(UndefinedValue()); break; case ExprType::I32: args.rval().set(Int32Value(*(int32_t*)&coercedArgs[0])); break; case ExprType::I64: MOZ_CRASH("int64"); case ExprType::F32: case ExprType::F64: args.rval().set(NumberValue(*(double*)&coercedArgs[0])); break; case ExprType::I32x4: simdObj = CreateSimd<Int32x4>(cx, (int32_t*)&coercedArgs[0]); if (!simdObj) return false; args.rval().set(ObjectValue(*simdObj)); break; case ExprType::F32x4: simdObj = CreateSimd<Float32x4>(cx, (float*)&coercedArgs[0]); if (!simdObj) return false; args.rval().set(ObjectValue(*simdObj)); break; case ExprType::B32x4: simdObj = CreateSimd<Bool32x4>(cx, (int32_t*)&coercedArgs[0]); if (!simdObj) return false; args.rval().set(ObjectValue(*simdObj)); break; case ExprType::Limit: MOZ_CRASH("Limit"); } return true; }
static bool ValidateGlobalVariable(JSContext* cx, const AsmJSModule& module, AsmJSModule::Global& global, HandleValue importVal) { void* datum = module.globalData() + global.varGlobalDataOffset(); switch (global.varInitKind()) { case AsmJSModule::Global::InitConstant: { Val v = global.varInitVal(); switch (v.type()) { case ValType::I32: *(int32_t*)datum = v.i32(); break; case ValType::I64: MOZ_CRASH("int64"); case ValType::F32: *(float*)datum = v.f32(); break; case ValType::F64: *(double*)datum = v.f64(); break; case ValType::I32x4: memcpy(datum, v.i32x4(), Simd128DataSize); break; case ValType::F32x4: memcpy(datum, v.f32x4(), Simd128DataSize); break; } break; } case AsmJSModule::Global::InitImport: { RootedPropertyName field(cx, global.varImportField()); RootedValue v(cx); if (!GetDataProperty(cx, importVal, field, &v)) return false; if (!v.isPrimitive() && !HasPureCoercion(cx, v)) return LinkFail(cx, "Imported values must be primitives"); switch (global.varInitImportType()) { case ValType::I32: if (!ToInt32(cx, v, (int32_t*)datum)) return false; break; case ValType::I64: MOZ_CRASH("int64"); case ValType::F32: if (!RoundFloat32(cx, v, (float*)datum)) return false; break; case ValType::F64: if (!ToNumber(cx, v, (double*)datum)) return false; break; case ValType::I32x4: { SimdConstant simdConstant; if (!ToSimdConstant<Int32x4>(cx, v, &simdConstant)) return false; memcpy(datum, simdConstant.asInt32x4(), Simd128DataSize); break; } case ValType::F32x4: { SimdConstant simdConstant; if (!ToSimdConstant<Float32x4>(cx, v, &simdConstant)) return false; memcpy(datum, simdConstant.asFloat32x4(), Simd128DataSize); break; } } break; } } return true; }