void WriteGlyphAsTGA(FT_Library &library, const std::string &fileName, wchar_t ch, FT_Face &face, int size, const Pixel32 &fontCol, const Pixel32 outlineCol, float outlineWidth) { // Set the size to use. if (FT_Set_Char_Size(face, size << 6, size << 6, 90, 90) == 0) { // Load the glyph we are looking for. FT_UInt gindex = FT_Get_Char_Index(face, ch); if (FT_Load_Glyph(face, gindex, FT_LOAD_NO_BITMAP) == 0) { // Need an outline for this to work. if (face->glyph->format == FT_GLYPH_FORMAT_OUTLINE) { // Render the basic glyph to a span list. Spans spans; RenderSpans(library, &face->glyph->outline, &spans); // Next we need the spans for the outline. Spans outlineSpans; // Set up a stroker. FT_Stroker stroker; FT_Stroker_New(library, &stroker); FT_Stroker_Set(stroker, (int)(outlineWidth * 64), FT_STROKER_LINECAP_ROUND, FT_STROKER_LINEJOIN_ROUND, 0); FT_Glyph glyph; if (FT_Get_Glyph(face->glyph, &glyph) == 0) { FT_Glyph_StrokeBorder(&glyph, stroker, 0, 1); // Again, this needs to be an outline to work. if (glyph->format == FT_GLYPH_FORMAT_OUTLINE) { // Render the outline spans to the span list FT_Outline *o = &reinterpret_cast<FT_OutlineGlyph>(glyph)->outline; RenderSpans(library, o, &outlineSpans); } // Clean up afterwards. FT_Stroker_Done(stroker); FT_Done_Glyph(glyph); // Now we need to put it all together. if (!spans.empty()) { // Figure out what the bounding rect is for both the span lists. Rect rect(spans.front().x, spans.front().y, spans.front().x, spans.front().y); for (Spans::iterator s = spans.begin(); s != spans.end(); ++s) { rect.Include(Vec2(s->x, s->y)); rect.Include(Vec2(s->x + s->width - 1, s->y)); } for (Spans::iterator s = outlineSpans.begin(); s != outlineSpans.end(); ++s) { rect.Include(Vec2(s->x, s->y)); rect.Include(Vec2(s->x + s->width - 1, s->y)); } #if 0 // This is unused in this test but you would need this to draw // more than one glyph. float bearingX = face->glyph->metrics.horiBearingX >> 6; float bearingY = face->glyph->metrics.horiBearingY >> 6; float advance = face->glyph->advance.x >> 6; #endif // Get some metrics of our image. int imgWidth = rect.Width(), imgHeight = rect.Height(), imgSize = imgWidth * imgHeight; // Allocate data for our image and clear it out to transparent. Pixel32 *pxl = new Pixel32[imgSize]; memset(pxl, 0, sizeof(Pixel32) * imgSize); // Loop over the outline spans and just draw them into the // image. for (Spans::iterator s = outlineSpans.begin(); s != outlineSpans.end(); ++s) for (int w = 0; w < s->width; ++w) pxl[(int)((imgHeight - 1 - (s->y - rect.ymin)) * imgWidth + s->x - rect.xmin + w)] = Pixel32(outlineCol.r, outlineCol.g, outlineCol.b, s->coverage); // Then loop over the regular glyph spans and blend them into // the image. for (Spans::iterator s = spans.begin(); s != spans.end(); ++s) for (int w = 0; w < s->width; ++w) { Pixel32 &dst = pxl[(int)((imgHeight - 1 - (s->y - rect.ymin)) * imgWidth + s->x - rect.xmin + w)]; Pixel32 src = Pixel32(fontCol.r, fontCol.g, fontCol.b, s->coverage); dst.r = (int)(dst.r + ((src.r - dst.r) * src.a) / 255.0f); dst.g = (int)(dst.g + ((src.g - dst.g) * src.a) / 255.0f); dst.b = (int)(dst.b + ((src.b - dst.b) * src.a) / 255.0f); dst.a = MIN(255, dst.a + src.a); } // Dump the image to disk. WriteTGA(fileName, pxl, imgWidth, imgHeight); delete [] pxl; } }
void fetchNext(SpanItr &s){ if(++s==spans.end()) { uint64_t nxtInterval=nextInterval(s->first, timeUnit); s=spans.insert(std::pair<int64_t,spanView*>(nxtInterval, new spanView(this, s->first,nxtInterval))).first; } };
SpanItr fetchSpan(int64_t idx){ SpanItr ret=spans.find(idx); if(ret!=spans.end()) return ret; spans.insert(std::pair<int64_t,spanView*>(idx, new spanView(this, idx, nextInterval(idx,timeUnit)))).first; };
// The 'move' commands fetch spans as needed then set leftMostSpan and backLeft. void moveTo(uint64_t idx){ SpanItr ret=spans.find(idx); if(ret!=spans.end()) leftMostSpan=ret; else leftMostSpan=spans.insert(std::pair<int64_t,spanView*>(idx, new spanView(this, idx, nextInterval(idx,timeUnit)))).first; backLeft=0; };