//#ifdef _MSC_VER //#ifndef MSSINGLESCAN_MAIN //int mssinglescan_main(int argc, char * argv[] ) { //#else //int main(int argc, char *argv[]){ //#endif //#else int main(int argc, char *argv[]){ //#endif //Here are all the variable we are going to need MSReader r; Spectrum s; int j; if(argc==1){ printf("DESCRIPTION: Reads an MS/MS spectrum from any MSToolkit supported file type and outputs to screen in MS2 format.\n\n"); printf("USAGE: MSSingleScan [scan number] [file]\n"); exit(0); }; r.readFile(argv[2],s,atoi(argv[1])); if(s.getScanNumber()==0) exit(-1); printf("S\t%d\t%d\t%.*f\n",s.getScanNumber(),s.getScanNumber(),2,s.getMZ()); if(s.getRTime()>0) printf("I\tRTime\t%.*f\n",4,s.getRTime()); for(j=0;j<s.sizeZ();j++){ printf("Z\t%d\t%.*f\n",s.atZ(j).z,2,s.atZ(j).mz); }; for(j=0;j<s.size();j++){ printf("%.4f %.4f\n",s.at(j).mz,s.at(j).intensity); }; return 0; };
bool CPeptideDatabase::readMascot(char* mascotFile, char* dataFile){ MSReader r; MascotParser p; Spectrum s; MascotLite m; int i; int percent=0; p.clear(); p.readText(mascotFile); if(p.isDistiller()){ cout << mascotFile << "\t" << p.size() << " peptides from Distiller, no need for RT lookup." << endl; } else if(p.hasRTime()){ cout << mascotFile << "\t" << p.size() << " peptides have RT already, no need for lookup." << endl; } else { cout << mascotFile << "\tLooking up retention times for " << p.size() << " Mascot peptides..." << endl; cout << percent; r.readFile(dataFile,s); } for(i=0;i<p.size();i++){ if(p.isDistiller()||p.hasRTime()){ m.rTime=p[i].rTime; } else { if( (int)i*100/p.size() > percent){ percent=(int)i*100/p.size(); cout << "\b\b\b" << percent; } r.readFile(NULL,s,p[i].scanNum); if(s.getScanNumber()==0){ cout << "Scan not found. Please check that correct data file is used. Stopping Mascot parsing." << endl; return false; } m.rTime=s.getRTime(); } m.charge=p[i].charge; m.fileID=fileID; m.monoMass=p[i].zeroMass; m.scanNum=p[i].scanNum; strcpy(m.peptide,p[i].sequence_Long); strcpy(m.protein,p[i].gene); mascot.push_back(m); } cout << " Done!" << endl; fileID++; return true; }
//First derivative method taken from CSpecAnalyze, returns base peak intensity of the set void CNoiseReduction::FirstDerivativePeaks(Spectrum& sp, int winSize){ int i,j; float maxIntensity; int bestPeak; bool bLastPos; Spectrum gp; int nextBest; double FWHM; Peak_T centroid; bLastPos=false; for(i=0;i<sp.size()-winSize;i++){ if(sp.at(i).intensity<sp.at(i+winSize).intensity) { bLastPos=true; continue; } else { if(bLastPos){ bLastPos=false; //find max and add peak maxIntensity=0; for(j=i;j<i+winSize;j++){ if (sp.at(j).intensity>maxIntensity){ maxIntensity=sp.at(j).intensity; bestPeak = j; } } //Best estimate of Gaussian centroid //Get 2nd highest point of peak if(bestPeak==sp.size()-1){ nextBest=bestPeak-1; } else if(sp.at(bestPeak-1).intensity > sp.at(bestPeak+1).intensity){ nextBest=bestPeak-1; } else { nextBest=bestPeak+1; } //Get FWHM FWHM = calcFWHM(sp.at(bestPeak).mz); //Calc centroid MZ (in three lines for easy reading) centroid.mz = pow(FWHM,2)*log(sp.at(bestPeak).intensity/sp.at(nextBest).intensity); centroid.mz /= GC*(sp.at(bestPeak).mz-sp.at(nextBest).mz); centroid.mz += (sp.at(bestPeak).mz+sp.at(nextBest).mz)/2; //Calc centroid intensity centroid.intensity=(float)(sp.at(bestPeak).intensity/exp(-pow((sp.at(bestPeak).mz-centroid.mz)/FWHM,2)*GC)); //some peaks are funny shaped and have bad gaussian fit. //if error is more than 10%, keep existing intensity if( fabs((sp.at(bestPeak).intensity - centroid.intensity) / centroid.intensity * 100) > 10 || //not a good check for infinity centroid.intensity>999999999999.9 || centroid.intensity < 0 ) { centroid.intensity=sp.at(bestPeak).intensity; } //Hack until I put in mass ranges if(centroid.mz<0 || centroid.mz>2000) { //do nothing if invalid mz } else { gp.add(centroid); } i+=winSize-1; } } } int scanNumber=sp.getScanNumber(); int scanNumber2=sp.getScanNumber(false); float rTime=sp.getRTime(); sp = gp; sp.setRTime(rTime); sp.setScanNumber(scanNumber); sp.setScanNumber(scanNumber2,true); }
bool CNoiseReduction::ScanAveragePlusDeNoise(Spectrum& sp, char* file, int width, float cutoff, int scanNum){ Spectrum ts; Spectrum ps; //MSReader r; vector<int> v; vector<int> vPos; int i; int j; int k; int widthCount=0; int numScans=1; int match; double dif; double prec; double dt; double c; bool bLeft=true; int posLeft=ps.getScanNumber()-1; int posRight=ps.getScanNumber()+1; int index; char cFilter1[256]; //char cFilter2[256]; sp.clear(); //if file is not null, create new buffer if(file!=NULL){ strcpy(lastFile,file); bs.clear(); if(scanNum>0) r->readFile(file,ts,scanNum); else r->readFile(file,ts); if(ts.getScanNumber()==0) return false; bs.push_back(ts); ps=bs[0]; c=CParam(ps,3); posA=0; } else { posA++; //cout << "ER: " << posA << " " << bs.size() << endl; if(posA>=(int)bs.size()) return false; //end of buffer, no more data ps=bs[posA]; c=CParam(ps,3); } //set our pivot spectrum //ps=bs[posA]; ps.getRawFilter(cFilter1,256); //cout << "Averaging: " << ps.getScanNumber() << endl; posLeft=posA; posRight=posA; while(widthCount<(width*2)){ index=-1; //Alternate looking left and right if(bLeft){ bLeft=false; widthCount++; while(true){ posLeft--; //cout << posLeft << endl; if(posLeft<0) { //buffer is too short on left, add spectra i=bs[0].getScanNumber(); while(true){ i--; //cout << "I: " << i << endl; if(i==0) break; r->readFile(lastFile,ts,i); if(ts.getScanNumber()==0) continue; else break; } if(i==0) break; bs.push_front(ts); for(i=0;i<(int)v.size();i++)v[i]++; posA++; posRight++; posLeft=0; //ts.getRawFilter(cFilter2,256); if(ts.getMsLevel()==cs.msLevel) { index=posLeft; break; } } else { //bs[posLeft].getRawFilter(cFilter2,256); if(bs[posLeft].getMsLevel()==cs.msLevel) { index=posLeft; break; } } } } else { bLeft=true; widthCount++; while(true){ posRight++; if(posRight>=(int)bs.size()) { //buffer is too short on right, add spectra r->readFile(lastFile,ts,bs[bs.size()-1].getScanNumber()); r->readFile(NULL,ts); if(ts.getScanNumber()==0) { posRight--; break; } bs.push_back(ts); //ts.getRawFilter(cFilter2,256); if(ts.getMsLevel()==cs.msLevel) { index=posRight; break; } } else { //bs[posRight].getRawFilter(cFilter2,256); if(bs[posRight].getMsLevel()==cs.msLevel) { index=posRight; break; } } } } if(index==-1) continue; //ts=bs[index]; v.push_back(index); numScans++; } //cout << "Still Averaging: " << ps.getScanNumber() << endl; //cout << " with: "; //for(i=0;i<v.size();i++) cout << bs[v[i]].getScanNumber() << " "; //cout << endl; //cout << numScans << " " << v.size() << endl; //Match peaks between pivot scan and neighbors for(i=0;i<(int)v.size();i++) vPos.push_back(0); for(i=0;i<(int)ps.size();i++){ //iterate all points prec = c * ps.at(i).mz * ps.at(i).mz / 2; match=1; for(k=0;k<(int)v.size();k++){ //iterate all neighbors dif=100000.0; //cout << "Checking " << bs[v[k]].getScanNumber() << " pos " << vPos[k] << endl; for(j=vPos[k];j<bs[v[k]].size();j++){ //check if point is a match dt=fabs(ps.at(i).mz-bs[v[k]].at(j).mz); if(dt<=dif) { if(dt<prec) { ps.at(i).intensity+=bs[v[k]].at(j).intensity; vPos[k]=j+1; match++; break; } dif=dt; } else { vPos[k]=j-1; break; } } } //if data point was not visible across enough scans, set it to 0 if(match<cs.boxcarFilter && match<(int)v.size()) ps.at(i).intensity=0.0; } //Average points and apply cutoff for(i=0;i<ps.size();i++) { ps.at(i).intensity/=numScans; sp.add(ps.at(i)); //if(ps.at(i).intensity>=cutoff) sp.add(ps.at(i)); } sp.setScanNumber(ps.getScanNumber()); sp.setScanNumber(ps.getScanNumber(true),true); sp.setRTime(ps.getRTime()); sp.setRawFilter(cFilter1); //clear unused buffer if(posLeft>0){ while(posLeft>0){ bs.pop_front(); posLeft--; posA--; } } //cout << "Done averaging" << endl; return true; }