コード例 #1
0
ファイル: poj3481_splay.cpp プロジェクト: LiaoZhuo/Practice
int main(){
  //cout << RAND_MAX << endl;
  //freopen("b.in", "priority", stdin);
  int op;
  int cnt = 0;
  while (scanf("%d", &op) != EOF && op){
    cnt++;
    //cout << "[" << ++cnt << "]" << endl;
    if (op == 1){
      int K, P; scanf("%d%d", &K, &P);
      splay.insert(P, K);
    }else if (op == 2){
      if (splay.empty()) printf("0\n");
      else{
        SplayNode* no = splay.findMax();
        printf("%d\n", no->value);
        splay.remove(no);
      }
    }else{
      if (splay.empty()) printf("0\n");
      else{
        SplayNode* no = splay.findMin();
        printf("%d\n", no->value);
        splay.remove(no);
      }
    }
  }
  //for (int i = 0; i< cnt; i++){
    //splay.findMin(), splay.findMax();
  //}
  //cout << cnt << endl;
}
コード例 #2
0
ファイル: main.cpp プロジェクト: HillBamboo/MOOCs
template <typename T> void  testSplayRandom ( int n ) { //随机访问测试
   Splay<T> splay;
   while ( splay.size() < n ) {
      T e = dice ( ( T ) n * 3 ); //[0, 3n)范围内的e
      switch ( dice ( 3 ) ) {
         case 0: { //查找,成功率 <= 33.3%
            printf ( "Searching for " ); print ( e ); printf ( " ...\n" );
            splay.search ( e ) ?
            printf ( "Found with" ), print ( splay.root() ), printf ( "\n" ) :
            printf ( "Not found\n" );
            break;
         }
         case 1: { //删除,成功率 <= 33.3%
            printf ( "Removing " ); print ( e ); printf ( " ...\n" );
            splay.remove ( e ) ?
            printf ( "Removal done\n" ) :
            print ( e ), printf ( " not exists\n" );
            break;
         }
         default: {//插入,成功率 == 100%
            printf ( "Inserting " ); print ( e ); printf ( " ...\n" );
            splay.insert ( e );
            ( e == splay.root()->data ) ?
            printf ( "Insertion done with" ), print ( splay.root() ), printf ( "\n" ) :
            print ( e ), "duplicated";
            break;
         }
      } //switch
      print ( splay ); //无论调用哪个接口,Splay都会自我调整形态,故需统一输出
   } //while
   while ( splay.size() > 0 ) {
      T e = dice ( ( T ) n * 3 ); //[0, 3n)范围内的e
      printf ( "Removing " ); print ( e ); printf ( " ...\n" );
      splay.remove ( e ) ? printf ( "Removal done\n" ), print ( splay ) : print ( e ), printf ( " not exists\n" );
   }
} //课后:利用这一接口,针对不同分布的访问,验证课上对Splay分摊分析的结论