コード例 #1
0
ファイル: unix.C プロジェクト: dyninst/dyninst
void BinaryEdit::makeInitAndFiniIfNeeded()
{
    using namespace Dyninst::SymtabAPI;

    Symtab* linkedFile = getAOut()->parse_img()->getObject();

    // Disable this for .o's and static binaries
    if( linkedFile->isStaticBinary() || 
        linkedFile->getObjectType() == obj_RelocatableFile ) 
    {
        return;
    }

    bool foundInit = false;
    bool foundFini = false;
    vector <Function *> funcs;
    if (linkedFile->findFunctionsByName(funcs, "_init")) {
        foundInit = true;
    }
    if (linkedFile->findFunctionsByName(funcs, "_fini")) {
        foundFini = true;
    }
    if( !foundInit )
    {
        Offset initOffset = linkedFile->getInitOffset();
        Region *initsec = linkedFile->findEnclosingRegion(initOffset);
        if(!initOffset || !initsec)
        {
            unsigned char* emptyFunction = NULL;
            int emptyFuncSize = 0;
#if defined(arch_x86) || defined(arch_x86_64)
            static unsigned char empty_32[] = { 0x55, 0x89, 0xe5, 0xc9, 0xc3 };
            static unsigned char empty_64[] = { 0x55, 0x48, 0x89, 0xe5, 0xc9, 0xc3 };
            if(linkedFile->getAddressWidth() == 8)
            {
                emptyFunction = empty_64;
                emptyFuncSize = 6;
            }
            else
            {
                emptyFunction = empty_32;
                emptyFuncSize = 5;
            }
#elif defined (arch_power)
            static unsigned empty[] = {0x4e800020};
            emptyFunction = (unsigned char*) empty;
            emptyFuncSize = 4;
#endif //defined(arch_x86) || defined(arch_x86_64)
            linkedFile->addRegion(highWaterMark_, (void*)(emptyFunction), emptyFuncSize, ".init.dyninst",
                                  Dyninst::SymtabAPI::Region::RT_TEXT, true);
            highWaterMark_ += emptyFuncSize;
            lowWaterMark_ += emptyFuncSize;
            linkedFile->findRegion(initsec, ".init.dyninst");
            assert(initsec);
            linkedFile->addSysVDynamic(DT_INIT, initsec->getMemOffset());
            startup_printf("%s[%d]: creating .init.dyninst region, region addr 0x%lx\n",
                           FILE__, __LINE__, initsec->getMemOffset());
        }
        startup_printf("%s[%d]: ADDING _init at 0x%lx\n", FILE__, __LINE__, initsec->getMemOffset());
        Symbol *initSym = new Symbol( "_init",
                                      Symbol::ST_FUNCTION,
                                      Symbol::SL_GLOBAL,
                                      Symbol::SV_DEFAULT,
                                      initsec->getMemOffset(),
                                      linkedFile->getDefaultModule(),
                                      initsec,
                                      UINT_MAX );
        linkedFile->addSymbol(initSym);
    }
    if( !foundFini )
    {
        Offset finiOffset = linkedFile->getFiniOffset();
        Region *finisec = linkedFile->findEnclosingRegion(finiOffset);
        if(!finiOffset || !finisec)
        {
            unsigned char* emptyFunction = NULL;
            int emptyFuncSize = 0;
#if defined(arch_x86) || defined(arch_x86_64)
            static unsigned char empty_32[] = { 0x55, 0x89, 0xe5, 0xc9, 0xc3 };
            static unsigned char empty_64[] = { 0x55, 0x48, 0x89, 0xe5, 0xc9, 0xc3 };
            if(linkedFile->getAddressWidth() == 8)
            {
                emptyFunction = empty_64;
                emptyFuncSize = 6;
            }
            else
            {
                emptyFunction = empty_32;
                emptyFuncSize = 5;
            }

#elif defined (arch_power)
            static unsigned empty[] = {0x4e800020};
            emptyFunction = (unsigned char*) empty;
            emptyFuncSize = 4;

#elif defined (arch_aarch64)
            static unsigned char empty[] = { 
                0xfd, 0x7b, 0xbf, 0xa9, 
                0xfd, 0x03, 0x00, 0x91, 
                0xfd, 0x7b, 0xc1, 0xa8, 
                0xc0, 0x03, 0x5f, 0xd6};
            emptyFunction = empty;
            emptyFuncSize = 16;
#endif //defined(arch_x86) || defined(arch_x86_64)

            linkedFile->addRegion(highWaterMark_, (void*)(emptyFunction), emptyFuncSize, ".fini.dyninst",
                                  Dyninst::SymtabAPI::Region::RT_TEXT, true);
            highWaterMark_ += emptyFuncSize;
            lowWaterMark_ += emptyFuncSize;
            linkedFile->findRegion(finisec, ".fini.dyninst");
            assert(finisec);
            linkedFile->addSysVDynamic(DT_FINI, finisec->getMemOffset());
            startup_printf("%s[%d]: creating .fini.dyninst region, region addr 0x%lx\n",
                           FILE__, __LINE__, finisec->getMemOffset());

        }
        startup_printf("%s[%d]: ADDING _fini at 0x%lx\n", FILE__, __LINE__, finisec->getMemOffset());
        Symbol *finiSym = new Symbol( "_fini",
                                      Symbol::ST_FUNCTION,
                                      Symbol::SL_GLOBAL,
                                      Symbol::SV_DEFAULT,
                                      finisec->getMemOffset(),
                                      linkedFile->getDefaultModule(),
                                      finisec,
                                      UINT_MAX );
        linkedFile->addSymbol(finiSym);
    }
}
コード例 #2
0
ファイル: binaryEdit.C プロジェクト: sirmc/XnRmor
bool BinaryEdit::writeFile(const std::string &newFileName) 
{
   // Step 1: changes. 


      inst_printf(" writing %s ... \n", newFileName.c_str());

      Symtab *symObj = mobj->parse_img()->getObject();

      // link to the runtime library if tramp guards are currently enabled
      if ( !symObj->isStaticBinary() && !BPatch::bpatch->isTrampRecursive() ) {
          assert(!runtime_lib.empty());
          symObj->addLibraryPrereq((*runtime_lib.begin())->fileName());
      }

      if( symObj->isStaticBinary() && isDirty() ) {
         if( !doStaticBinarySpecialCases() ) {
	   cerr << "Failed to write file " << newFileName << ": static binary handler failed" << endl;
	   return false;
         }
      }

   	  delayRelocation_ = false;
      relocate();
      
      vector<Region*> oldSegs;
      symObj->getAllRegions(oldSegs);

      //Write any traps to the mutatee
      if (canUseTraps()) {
         trapMapping.shouldBlockFlushes(false);
         trapMapping.flush();
      }

      // Now, we need to copy in the memory of the new segments
      for (unsigned i = 0; i < oldSegs.size(); i++) {
         codeRange *segRange = NULL;
         if (!memoryTracker_->find(oldSegs[i]->getMemOffset(), segRange)) {
#if 0
            // Looks like BSS
            if (newSegs[i].name == ".bss")
#endif
               continue;
            //inst_printf (" segment name: %s\n", newSegs[i].name.c_str());
            //assert(0);
         }
         //inst_printf(" ==> memtracker: Copying to 0x%lx from 0x%lx\n", 
         //newSegs[i].loadaddr, segRange->get_local_ptr());
	 memoryTracker* mt = dynamic_cast<memoryTracker*>(segRange);
	 assert(mt);
	 if(mt->dirty) {
            oldSegs[i]->setPtrToRawData(segRange->get_local_ptr(), oldSegs[i]->getMemSize());
	 }
	 
         //newSegs[i].data = segRange->get_local_ptr();
      }

      // Okay, that does it for the old stuff.

      // Now we need to get the new stuff. That's all the allocated memory. First, big
      // buffer to hold it.

      void *newSectionPtr = malloc(highWaterMark_ - lowWaterMark_);

      pdvector<codeRange *> writes;
      memoryTracker_->elements(writes);

      for (unsigned i = 0; i < writes.size(); i++) {
         assert(newSectionPtr);
         memoryTracker *tracker = dynamic_cast<memoryTracker *>(writes[i]);
         assert(tracker);
         //inst_printf("memory tracker: 0x%lx  load=0x%lx  size=%d  %s\n", 
         //tracker->get_local_ptr(), tracker->get_address(), tracker->get_size(),
         //tracker->alloced ? "[A]" : "");
         if (!tracker->alloced) continue;

         // Copy whatever is in there into the big buffer, at the appropriate address
         assert(tracker->get_address() >= lowWaterMark_);
         Address offset = tracker->get_address() - lowWaterMark_;
         assert((offset + tracker->get_size()) < highWaterMark_);
         void *ptr = (void *)(offset + (Address)newSectionPtr);
         memcpy(ptr, tracker->get_local_ptr(), tracker->get_size());
      }
            
      // Righto. Now, that includes the old binary - by design - 
      // so skip it and see what we're talking about size-wise. Which should
      // be less than the highWaterMark, so we can double-check.

      // Next, make a new section. We have the following parameters:
      // Offset vaddr: we get this from Symtab - "first free address with sufficient space"
      // std::string name: without reflection, ".dyninstInst"
      // unsigned long flags: these are a SymtabAPI abstraction. We're going with text|data because
      //    we might have both.
      // bool loadable: heck yeah...
        
      Region *newSec = NULL;
      symObj->findRegion(newSec, ".dyninstInst");
      if (newSec) {
         // We're re-instrumenting - will fail for now
         fprintf(stderr, "ERROR:  unable to open/reinstrument previously instrumented binary %s!\n", newFileName.c_str());
         return false;
      }

      symObj->addRegion(lowWaterMark_,
                        newSectionPtr,
                        highWaterMark_ - lowWaterMark_,
                        ".dyninstInst",
                        Region::RT_TEXTDATA,
                        true);
	  fprintf(stderr,"Write lowWater : %lx, highWater : %lx\n",lowWaterMark_,highWaterMark_);
      
      symObj->findRegion(newSec, ".dyninstInst");
      assert(newSec);

      
      if (mobj == getAOut()) {
         // Add dynamic symbol relocations
         for (unsigned i=0; i < dependentRelocations.size(); i++) {
            Address to = dependentRelocations[i]->getAddress();
            Symbol *referring = dependentRelocations[i]->getReferring();
            /*
              if (!symObj->isStaticBinary() && !symObj->hasReldyn() && !symObj->hasReladyn()) {
              Address addr = referring->getOffset();
              bool result = writeDataSpace((void *) to, getAddressWidth(), &addr);
              assert(result);
              continue;
              }
            */
               
            // Create the relocationEntry
            relocationEntry localRel(to, referring->getMangledName(), referring,
                                     relocationEntry::getGlobalRelType(getAddressWidth(), referring));
	    
            /*
              if( mobj->isSharedLib() ) {
              localRel.setRelAddr(to - mobj->imageOffset());
              }
            */
            
            symObj->addExternalSymbolReference(referring, newSec, localRel);
            
            /*
              newSymbol = new Symbol(referring->getName(), 
              Symbol::ST_FUNCTION, 
              Symbol::SL_GLOBAL,
              Symbol::SV_DEFAULT, 
              (Address)0, 
              symObj->getDefaultModule(),
              NULL, 
              8,
              true, 
              false);
              symObj->addSymbol(newSymbol, referring);
              if (!symObj->hasReldyn() && symObj->hasReladyn()) {
              newSec->addRelocationEntry(to, newSymbol, relocationEntry::dynrel, Region::RT_RELA);
              } else {
              newSec->addRelocationEntry(to, newSymbol, relocationEntry::dynrel);
              }
            */
         }
      }
      
      pdvector<Symbol *> newSyms;
      buildDyninstSymbols(newSyms, newSec, symObj->getOrCreateModule("dyninstInst",
                                                                     lowWaterMark_));
      for (unsigned i = 0; i < newSyms.size(); i++) {
         symObj->addSymbol(newSyms[i]);
      }
      
      // Okay, now...
      // Hand textSection and newSection to DynSymtab.
        
      // First, textSection.
        
      // From the SymtabAPI documentation: we have the following methods we want to use.
      // Symtab::addSection(Offset vaddr, void *data, unsigned int dataSize, std::string name, 
      //                    unsigned long flags, bool loadable)
      // Symtab::updateCode(void *buffer, unsigned size)
      // Symtab::emit(std::string filename)
        
      // First, text
      assert(symObj);
      
      
      // And now we generate the new binary
      //if (!symObj->emit(newFileName.c_str())) {
      if (!symObj->emit(newFileName.c_str())) {
         SymtabError lastError = Symtab::getLastSymtabError();
         showErrorCallback(109, Symtab::printError(lastError));
         return false;
      }
   return true;
}