コード例 #1
0
ファイル: statplot.cpp プロジェクト: Accio/snap
// Inverse participation ratio: normalize EigVec to have L2=1 and then I=sum_k EigVec[i]^4
// see Spectra of "real-world" graphs: Beyond the semicircle law by Farkas, Derenyi, Barabasi and Vicsek
void PlotInvParticipRat(const PUNGraph& Graph, const int& MaxEigVecs, const int& TimeLimit, const TStr& FNmPref, TStr DescStr) {
  TFltPrV EigIprV;
  GetInvParticipRat(Graph, MaxEigVecs, TimeLimit, EigIprV);
  if (DescStr.Empty()) { DescStr = FNmPref; }
  if (EigIprV.Empty()) { DescStr+=". FAIL"; EigIprV.Add(TFltPr(-1,-1)); return; }
  TGnuPlot::PlotValV(EigIprV, "eigIPR."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f (%d values)",
    DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), EigIprV.Last().Val1(), EigIprV.Len()),
    "Eigenvalue", "Inverse Participation Ratio of corresponding Eigenvector", gpsLog10Y, false, gpwPoints);
}
コード例 #2
0
ファイル: gnuplot.cpp プロジェクト: mkrnc/snap
// MLE power-coefficient
int TGnuPlot::AddPwrFit2(const int& PlotId, const TGpSeriesTy& SeriesTy, const double& MinX, const TStr& Style) {
  const TGpSeries& Plot = SeriesV[PlotId];
  if(Plot.XYValV.Empty()) return -1;
  const TFltKdV& XY = Plot.XYValV;
  // power fit
  TFltPrV XYPr;
  double MinY = TFlt::Mx;
  for (int s = 0; s < XY.Len(); s++) {
    if (XY[s].Key > 0.0) {
      XYPr.Add(TFltPr(XY[s].Key, XY[s].Dat));
      MinY = TMath::Mn(MinY, XY[s].Dat());
    }
  }
  if (XYPr.Empty()) return -1;
  MinY = TMath::Mn(1.0, MinY);
  // determine the sign of power coefficient
  double CoefSign = 0.0;
  { double A, B, R2, SigA, SigB, Chi2;
  TSpecFunc::PowerFit(XYPr, A, B, SigA, SigB, Chi2, R2);
  CoefSign = B > 0.0 ? +1.0 : -1.0; }
  const double PowerCf = CoefSign * TSpecFunc::GetPowerCoef(XYPr, MinX);
  int Mid = (int) exp(log((double)XYPr.Len())/2.0);
  if (Mid >= XYPr.Len()) { Mid = XYPr.Len()-1; }
  const double MidX = XYPr[Mid].Val1();
  const double MidY = XYPr[Mid].Val2();
  const double B = MidY / pow(MidX, PowerCf);
  TStr StyleStr=Style;
  if (StyleStr.Empty()) { StyleStr = "linewidth 3"; }
  const int FitId = AddFunc(TStr::Fmt("%f*x**%f", B, PowerCf),
    SeriesTy, TStr::Fmt("MLE = x^{%.4g}", PowerCf), StyleStr);
  return FitId;
  /*SeriesV.Add();
  TGpSeries& NewPlot = SeriesV.Last();
  TFltKdV& XYFit = NewPlot.XYValV;
  XYFit.Gen(XYPr.Len(), 0);
  for (int s = 0; s < XYPr.Len(); s++) {
    const double XVal = XYPr[s].Val1;
    const double YVal = B * pow(XYPr[s].Val1(), PowerCf);
    if (YVal < MinY || XVal < MinX) continue;
    XYFit.Add(TFltKd(XVal, YVal));
  }
  NewPlot.Label = TStr::Fmt("PowerFit: %g", PowerCf);
  NewPlot.SeriesTy = SeriesTy;
  if (Style.Empty()) { NewPlot.WithStyle = "linewidth 3"; }
  else { NewPlot.WithStyle = Style; }
  return SeriesV.Len() - 1;*/
}