void piechart() { Float_t vals[] = {.2,1.1,.6,.9,2.3}; Int_t colors[] = {2,3,4,5,6}; Int_t nvals = sizeof(vals)/sizeof(vals[0]); TCanvas *cpie = new TCanvas("cpie","TPie test",700,700); cpie->Divide(2,2); TPie *pie1 = new TPie("pie1", "Pie with offset and no colors",nvals,vals); TPie *pie2 = new TPie("pie2", "Pie with radial labels",nvals,vals,colors); TPie *pie3 = new TPie("pie3", "Pie with tangential labels",nvals,vals,colors); TPie *pie4 = new TPie("pie4", "Pie with verbose labels",nvals,vals,colors); cpie->cd(1); pie1->SetAngularOffset(30.); pie1->SetEntryRadiusOffset( 4, 0.1); pie1->SetRadius(.35); pie1->Draw("3d"); cpie->cd(2); pie2->SetEntryRadiusOffset(2,.05); pie2->SetEntryLineColor(2,2); pie2->SetEntryLineWidth(2,5); pie2->SetEntryLineStyle(2,2); pie2->SetEntryFillStyle(1,3030); pie2->SetCircle(.5,.45,.3); pie2->Draw("rsc"); cpie->cd(3); pie3->SetY(.32); pie3->GetSlice(0)->SetValue(.8); pie3->GetSlice(1)->SetFillStyle(3031); pie3->SetLabelsOffset(-.1); pie3->Draw("3d t nol"); TLegend *pieleg = pie3->MakeLegend(); pieleg->SetY1(.56); pieleg->SetY2(.86); cpie->cd(4); pie4->SetRadius(.2); pie4->SetLabelsOffset(.01); pie4->SetLabelFormat("#splitline{%val (%perc)}{%txt}"); pie4->Draw("nol <"); }
void plot_efficiencies( TFile* file, Int_t type = 2, TDirectory* BinDir) { // input: - Input file (result from TMVA), // - type = 1 --> plot efficiency(B) versus eff(S) // = 2 --> plot rejection (B) versus efficiency (S) Bool_t __PLOT_LOGO__ = kTRUE; Bool_t __SAVE_IMAGE__ = kTRUE; // the coordinates Float_t x1 = 0; Float_t x2 = 1; Float_t y1 = 0; Float_t y2 = 0.8; // reverse order if "rejection" if (type == 2) { Float_t z = y1; y1 = 1 - y2; y2 = 1 - z; // cout << "--- type==2: plot background rejection versus signal efficiency" << endl; } else { // cout << "--- type==1: plot background efficiency versus signal efficiency" << endl; } // create canvas TCanvas* c = new TCanvas( "c", "the canvas", 200, 0, 650, 500 ); // global style settings c->SetGrid(); c->SetTicks(); // legend Float_t x0L = 0.107, y0H = 0.899; Float_t dxL = 0.457-x0L, dyH = 0.22; if (type == 2) { x0L = 0.15; y0H = 1 - y0H + dyH + 0.07; } TLegend *legend = new TLegend( x0L, y0H-dyH, x0L+dxL, y0H ); legend->SetTextSize( 0.05 ); legend->SetHeader( "MVA Method:" ); legend->SetMargin( 0.4 ); TString xtit = "Signal efficiency"; TString ytit = "Background efficiency"; if (type == 2) ytit = "Background rejection"; TString ftit = ytit + " versus " + xtit; if (TString(BinDir->GetName()).Contains("multicut")){ ftit += " Bin: "; ftit += (BinDir->GetTitle()); } // draw empty frame if(gROOT->FindObject("frame")!=0) gROOT->FindObject("frame")->Delete(); TH2F* frame = new TH2F( "frame", ftit, 500, x1, x2, 500, y1, y2 ); frame->GetXaxis()->SetTitle( xtit ); frame->GetYaxis()->SetTitle( ytit ); TMVAGlob::SetFrameStyle( frame, 1.0 ); frame->Draw(); Int_t color = 1; Int_t nmva = 0; TKey *key, *hkey; TString hNameRef = "effBvsS"; if (type == 2) hNameRef = "rejBvsS"; TList hists; TList methods; UInt_t nm = TMVAGlob::GetListOfMethods( methods ); // TIter next(file->GetListOfKeys()); TIter next(&methods); // loop over all methods while (key = (TKey*)next()) { TDirectory * mDir = (TDirectory*)key->ReadObj(); TList titles; UInt_t ninst = TMVAGlob::GetListOfTitles(mDir,titles); TIter nextTitle(&titles); TKey *titkey; TDirectory *titDir; while ((titkey = TMVAGlob::NextKey(nextTitle,"TDirectory"))) { titDir = (TDirectory *)titkey->ReadObj(); TString methodTitle; TMVAGlob::GetMethodTitle(methodTitle,titDir); TIter nextKey( titDir->GetListOfKeys() ); while ((hkey = TMVAGlob::NextKey(nextKey,"TH1"))) { TH1 *h = (TH1*)hkey->ReadObj(); TString hname = h->GetName(); if (hname.Contains( hNameRef ) && hname.BeginsWith( "MVA_" )) { h->SetLineWidth(3); h->SetLineColor(color); color++; if (color == 5 || color == 10 || color == 11) color++; h->Draw("csame"); hists.Add(h); nmva++; } } } } while (hists.GetSize()) { TListIter hIt(&hists); TH1* hist(0); Double_t largestInt=-1; TH1* histWithLargestInt(0); while ((hist = (TH1*)hIt())!=0) { Double_t integral = hist->Integral(1,hist->FindBin(0.9999)); if (integral>largestInt) { largestInt = integral; histWithLargestInt = hist; } } if (histWithLargestInt == 0) { cout << "ERROR - unknown hist \"histWithLargestInt\" --> serious problem in ROOT file" << endl; break; } legend->AddEntry(histWithLargestInt,TString(histWithLargestInt->GetTitle()).ReplaceAll("MVA_",""),"l"); hists.Remove(histWithLargestInt); } // rescale legend box size // current box size has been tuned for 3 MVAs + 1 title if (type == 1) { dyH *= (1.0 + Float_t(nmva - 3.0)/4.0); legend->SetY1( y0H - dyH ); } else { dyH *= (Float_t(nmva - 3.0)/4.0); legend->SetY2( y0H + dyH); } // redraw axes frame->Draw("sameaxis"); legend->Draw("same"); // ============================================================ if (__PLOT_LOGO__) TMVAGlob::plot_logo(); // ============================================================ c->Update(); TString fname = "plots/" + hNameRef; if (TString(BinDir->GetName()).Contains("multicut")){ TString fprepend(BinDir->GetName()); fprepend.ReplaceAll("multicutMVA_",""); fname = "plots/" + fprepend + "_" + hNameRef; } if (__SAVE_IMAGE__) TMVAGlob::imgconv( c, fname ); return; }
void NLSimpleGuiWindow::drawClarkAnalysis( const ConsentrationGraph &xGraph, const ConsentrationGraph &yGraph, bool isCgmsVMeter ) { ui->tabWidget->setCurrentWidget(ui->clarkeGridTab); cleanupClarkAnalysis(); TimeDuration cmgsDelay(0,0,0,0); if( isCgmsVMeter ) { TCanvas *can = ui->clarkResultsWidget->GetCanvas(); can->cd(); can->SetEditable( kTRUE ); TPaveText *delayErrorEqnPt = new TPaveText(0, 0, 1.0, 1.0, "NDC"); delayErrorEqnPt->SetBorderSize(0); delayErrorEqnPt->SetTextAlign(12); cmgsDelay = m_model->findCgmsDelayFromFingerStick(); double sigma = 1000.0 * m_model->findCgmsErrorFromFingerStick(cmgsDelay); sigma = static_cast<int>(sigma + 0.5) / 10.0; //nearest tenth of a percent string delayStr = "Delay="; delayStr += boost::posix_time::to_simple_string(cmgsDelay).substr(3,5); delayStr += " "; ostringstream uncertDescript; uncertDescript << "#sigma_{cgms}^{finger}=" << sigma << "%"; delayErrorEqnPt->AddText( uncertDescript.str().c_str() ); delayErrorEqnPt->AddText( delayStr.c_str() ); delayErrorEqnPt->Draw(); can->SetEditable( kFALSE ); can->Update(); }//if( isCgmsVMeter ) TCanvas *can = ui->clarkeErrorGridWidget->GetCanvas(); can->cd(); can->SetEditable( kTRUE ); vector<TObject *> clarkesObj; clarkesObj = getClarkeErrorGridObjs( yGraph, xGraph, cmgsDelay, true ); assert( dynamic_cast<TH1 *>(clarkesObj[0]) ); dynamic_cast<TH1 *>(clarkesObj[0])->GetYaxis()->SetTitleOffset(1.3); clarkesObj[0]->Draw("SCAT"); clarkesObj[1]->Draw("SCAT SAME"); clarkesObj[2]->Draw("SCAT SAME"); clarkesObj[3]->Draw("SCAT SAME"); clarkesObj[4]->Draw("SCAT SAME"); TLegend *leg = dynamic_cast<TLegend *>( clarkesObj[5] ); assert( leg ); //Now draw all the boundry lines for( size_t i=6; i < clarkesObj.size(); ++i ) clarkesObj[i]->Draw(); can->SetEditable( kFALSE ); can->Update(); // can->ResizePad(); // ui->clarkeErrorGridWidget->Refresh(); can = ui->clarkeLegendWidget->GetCanvas(); can->cd(); leg->SetX1(-0.1); leg->SetX2(1.1); leg->SetY1(0.0); leg->SetY2(1.0); leg->Draw(); can->SetEditable( kFALSE ); can->Update(); }// void NLSimpleGuiWindow::drawPredictedClarkAnalysis()
//-------------------------------------------------------------------------------------------------- void plot(long int xStart, long int xEnd, TString text, TString pngFileName) { // Make sure we have the right styles MitRootStyle::Init(); MitRootStyle::SetStyleWide(); gStyle->SetPadRightMargin(0.07); // to make sure the exponent is on the picture // will execute a shell command to get the data TString timeSeriesFile("timeSeriesOfRates.txt"); // Now open our database output ifstream input; input.open(timeSeriesFile.Data()); Int_t time=0, nConn=0, nLines=0; Double_t rate=0, xMin=double(xStart), xMax=double(xEnd), maxRate=1.0; // First loop to determine the boundaries (could be done in one round, dynamically) //--------------------------------------------------------------------------------- while (1) { // read in input >> time >> rate >> nConn; // check it worked if (! input.good()) break; //printf(" Min / Time / Max: %d %d %d\n",xStart,time,xEnd); // check whether in our requested time window if (xStart>0 && xStart>time) continue; if (xEnd>0 && xEnd<time) continue; // Show what we are reading if (nLines < 5) printf(" time=%d, rate=%8f nConnections=%d\n",time, rate, nConn); // Determine plot maximum if (rate > maxRate) maxRate = rate; if (nConn > maxRate) maxRate = double(nConn); nLines++; } input.close(); printf(" \n"); printf(" Found %d measurements.\n",nLines); printf(" Maximum tranfer rate at: %6.2f MB/sec\n",maxRate); printf(" \n"); // Open a canvas TCanvas *cv = new TCanvas(); cv->Draw(); if (nLines<1) { printf(" WARNING - no measurements selected.\n"); plotFrame(double(xStart),double(xEnd)); double dX = double(xEnd)-double(xStart); TText *plotText = new TText(xMin-dX*0.14,0.-(maxRate*1.2*0.14),text.Data()); printf("Text size: %f\n",plotText->GetTextSize()); plotText->SetTextSize(0.04); plotText->SetTextColor(kBlue); plotText->Draw(); cv->SaveAs(pngFileName.Data()); return; } const int numVals = nLines; double xVals[numVals]; double y1Vals[numVals]; double y2Vals[numVals]; input.open(timeSeriesFile.Data()); // Second loop to register the measured values //-------------------------------------------- Int_t i = 0; while (1) { // read in input >> time >> rate >> nConn; // check it worked if (!input.good()) break; // check whether in our requested time window if (xStart>0 && xStart>time) continue; if (xEnd>0 && xEnd<time) continue; xVals[i] = time; y1Vals[i] = rate; y2Vals[i] = nConn; i++; } input.close(); // Make a good frame plotFrame(xMin,xMax,maxRate); double dX = double(xEnd)-double(xStart); TText *plotText = new TText(xMin-dX*0.14,0.-(maxRate*1.2*0.14),text.Data()); plotText->SetTextSize(0.04); plotText->SetTextColor(kBlue); plotText->Draw(); // Prepare our graphs TGraph* graph1 = new TGraph(numVals, xVals, y1Vals); graph1->SetLineColor(2); graph1->SetLineWidth(2); graph1->SetMarkerColor(4); graph1->SetMarkerStyle(21); graph1->SetMarkerSize(0.4); TGraph* graph2 = new TGraph(numVals, xVals, y2Vals); graph2->SetLineColor(3); graph2->SetLineWidth(2); graph2->SetMarkerColor(4); graph2->SetMarkerStyle(20); graph2->SetMarkerSize(0.4); // Through them into the multigraph TMultiGraph *mg = new TMultiGraph(); mg->Add(graph1,"lp"); mg->Add(graph2,"lp"); // Draw the graphs mg->Draw("CP"); // Add a nice legend to the picture TLegend *leg = new TLegend(0.4,0.6,0.89,0.89); //leg->SetTextSize(0.036); leg->SetX1(0.15); leg->SetX2(0.30); leg->SetY1(0.95); leg->SetY2(0.85); leg->SetBorderSize(0); leg->SetFillStyle(0); leg->AddEntry(graph2,"number of tranfers","lp"); leg->AddEntry(graph1,"data tranfer rate","lp"); leg->Draw(); cv->SaveAs(pngFileName); }
//-------------------------------------------------------------------------------------------------- void plot(long int xStart, long int xEnd, TString text, TString pngFileName) { // Make sure we have the right styles MitStyle::Init(); MitStyle::SetStyleWide(); gStyle->SetPadRightMargin(0.07); // to make sure the exponent is on the picture // will execute a shell command to get the data TString timeSeriesFile("timeSeriesOfFailures.txt"); // Now open our database output ifstream input; input.open(timeSeriesFile.Data()); Int_t time=0, nFail=0, nLines=0; Double_t xMin=double(xStart), xMax=double(xEnd), max=1.0; // First loop to determine the boundaries (could be done in one round, dynamically) //--------------------------------------------------------------------------------- while (1) { // read in input >> time >> nFail; // check it worked if (! input.good()) break; //printf(" Min / Time / Max: %d %d %d\n",xStart,time,xEnd); // check whether in our requested time window if (xStart>0 && xStart>time) continue; if (xEnd>0 && xEnd<time) continue; // Show what we are reading if (nLines < 5) printf(" time=%d, nFails=%d\n",time, nFail); // Determine plot maximum if (nFail > max) max = nFail; nLines++; } input.close(); printf(" \n"); printf(" Found %d measurements.\n",nLines); printf(" Maximum failures at: %6.2f in 90 sec\n",max); printf(" \n"); // Open a canvas TCanvas *cv = new TCanvas(); cv->SetLogy(kTRUE); cv->Draw(); if (nLines<1) { printf(" WARNING - no measurements selected.\n"); plotFrame(double(xStart),double(xEnd)); overlayFrame(text); cv->SaveAs(pngFileName.Data()); return; } const int numVals = nLines; double xVals[numVals]; double yVals[numVals]; input.open(timeSeriesFile.Data()); // Second loop to register the measured values //-------------------------------------------- Int_t i = 0; while (1) { // read in input >> time >> nFail; // check it worked if (!input.good()) break; // check whether in our requested time window if (xStart>0 && xStart>time) continue; if (xEnd>0 && xEnd<time) continue; xVals[i] = time; yVals[i] = nFail; i++; } input.close(); // Make a good frame plotFrame(xMin,xMax,max); // Prepare our graphs TGraph* graph1 = new TGraph(numVals, xVals, yVals); graph1->SetLineColor(2); graph1->SetLineWidth(2); graph1->SetMarkerColor(4); graph1->SetMarkerStyle(21); graph1->SetMarkerSize(0.4); // Through them into the multigraph TMultiGraph *mg = new TMultiGraph(); mg->Add(graph1,"lp"); // Draw the graphs mg->Draw("CP"); // Add a nice legend to the picture TLegend *leg = new TLegend(0.4,0.6,0.89,0.89); leg->SetX1(0.15); leg->SetX2(0.30); leg->SetY1(0.95); leg->SetY2(0.85); leg->SetBorderSize(0); leg->SetFillStyle(0); leg->AddEntry(graph1,"number of failures","lp"); leg->Draw(); overlayFrame(text); cv->SaveAs(pngFileName); }
void EstimateBg_76X(bool save=0, std::string in = "", std::string out = "/afs/cern.ch/user/j/jkarancs/public/NOTES/notes/AN-14-290/trunk/Plots/v1.0/", std::string ext="png") { gStyle->SetOptTitle(0); gStyle->SetOptStat(0); bool latex = save; bool ABCD_prime = 0; bool TT_only = 0; std::stringstream ss, ss2; ss<<DPHI_CUT; ss2<<R_CUT; std::string dphi_cut = ss.str().replace(ss.str().find("."),1,"p"); std::string r_cut = ss2.str().replace(ss2.str().find("."),1,"p"); std::string filename = in.size() ? in : //"results/Plotter_out_2016_05_31_08h48m57_replot.root"; "results/Plotter_out_2016_06_24_14h28m51.root"; std::vector<std::string> samples[4]; //samples[0].push_back("TTJetsMGHT"); //samples[0].push_back("TTJetsMG"); //samples[0].push_back("TTJetsNLOFXFX"); //samples[0].push_back("TTNLO"); //samples[0].push_back("TTNLOHerwig"); //samples[0].push_back("TTPowheg"); //samples[0].push_back("TTPowhegmpiOff"); //samples[0].push_back("TTPowhegnoCR"); //samples[0].push_back("TTPowhegHerwig"); //+data+ samples[1].push_back("SingleElectron"); //+data+ samples[1].push_back("SingleMuon"); if (TT_only) { samples[1].push_back("TTJetsMGHT"); samples[1].push_back("TTJetsMG"); samples[1].push_back("TTJetsNLOFXFX"); samples[1].push_back("TTNLO"); samples[1].push_back("TTNLOHerwig"); samples[1].push_back("TTPowheg"); samples[1].push_back("TTPowhegmpiOFF"); samples[1].push_back("TTPowhegnoCR"); samples[1].push_back("TTPowhegHerwig"); } else { samples[1].push_back("TTJetsMGHT"); //samples[1].push_back("TTJetsMG"); //samples[1].push_back("TTJetsNLOFXFX"); //samples[1].push_back("TTNLO"); //samples[1].push_back("TTNLOHerwig"); //samples[1].push_back("TTPowheg"); //samples[1].push_back("TTPowhegmpiOff"); //samples[1].push_back("TTPowhegnoCR"); //samples[1].push_back("TTPowhegHerwig"); samples[1].push_back("ZJets"); samples[1].push_back("TTX"); samples[1].push_back("WJets"); samples[1].push_back("Diboson"); samples[1].push_back("Top"); samples[1].push_back("QCD"); //ZERO samples[1].push_back("TZQ"); //ZERO samples[1].push_back("ZJetsToQQ"); // Also WJetsToQQ //ZERO samples[1].push_back("GJets"); } //samples[1].push_back("Data"); // NTop Sideband All background summed samples[2].push_back("All Bkg."); // Signal in NTop bins samples[3].push_back("T1tttt"); bool baderror = false; double weight[] = { 0.32686, 0.0505037, 0.00921411, 6.80717, 0.354934, 0.00484915 }; int rebin = /*(R_CUT*10-int(R_CUT*10))==0 ? 10 :*/ (R_CUT*20-int(R_CUT*20))==0 ? 5 : (R_CUT*50-int(R_CUT*50))==0 ? 2 : 1; double sideband_fit_low_range[] = { 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 }; int i_h_side[] = { 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int i_h_signal[] = { 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; double scale_factors[] = { 1, 1, 1, 1, 1, 1, 1}; // All normal //double scale_factors[] = { /* TT */ 1, /* W */ 1, /* Z */ 1, /* T */ 1, /* TTV */ 1, /* QCD */ 2, /* VV */ 1 }; // QCD high //double scale_factors[] = { /* TT */ 5, /* W */ 1, /* Z */ 1, /* T */ 1, /* TTV */ 5, /* QCD */ 1, /* VV */ 1 }; // TT/TTV high //double scale_factors[] = { /* TT */ 1, /* W */ 2, /* Z */ 2, /* T */ 2, /* TTV */ 1, /* QCD */ 1, /* VV */ 2 }; // T/V/VV high Double_t Rranges_ABCD[][4] = { { DPHI_CUT, 3.2, 0.0, DPHI_CUT }, { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 }, { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 }, { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 } }; bool doFitting = false; double sum_a = 0, sum_b = 0, sum_c = 0, sum_d = 0, sum_d_abcd = 0, sum_d_nevt = 0; double sum_a_err = 0, sum_b_err = 0, sum_c_err = 0, sum_d_err = 0, sum_d_abcd_err = 0; double sum_b_fit = 0, sum_d_fit = 0, sum_d_fit_comb = 0; double sum_b_fit_err = 0, sum_d_fit_err = 0, sum_d_fit_comb_err = 0; double comb_d = 0, comb_d_err = 0, comb_d_abcd = 0, comb_d_abcd_err = 0; if (latex) { printf("\\begin{table*}[htbH]\n"); printf("\\small\n"); printf("\\begin{center}\n"); printf("\\topcaption{Estimated Standard Model background yields in ABCD regions. A, B is in the sideband, C and D is the signal band, D is the signal region.\\label{tab:SMBkgEstimate}}\n"); printf("\\begin{tabular}{lrrrrrrrr}\n"); } TFile *f = TFile::Open(filename.c_str()); for (size_t iMethod = 0; iMethod<4; ++iMethod) if (!(iMethod==0&&samples[0].size()==0)){ // Print Top row for each method if (latex) { if (iMethod==0) { printf("\\hline\n"); printf("Method 2 & A & B & C & D = B*C/A & D obs. & Ratio pred./obs. & Pull & KS test\\\\\n"); } else if (iMethod==1){ printf("\\hline\n"); printf("Method 1 & A & B & C & D = B*C/A & D obs. & Ratio pred./obs. & Pull & KS test\\\\\n"); } printf("\\hline\n"); } else { std::stringstream r_sb_cut; if (R_CUT_LOW==0) r_sb_cut<<"R<"<<R_CUT; else r_sb_cut<<R_CUT_LOW<<"<R<"<<R_CUT; const char* prime = ABCD_prime ? "'" : ""; //if (iMethod==0) printf("| *Sample* | *A (DPhi>2.8, SB)* | *B (DPhi<2.8, SB)* | *C (DPhi>2.8, Sig.B.)* | - | *D = B*C/A pred.* | *D (DPhi<2.8, Sig.B.) obs.* | *Ratio pred./obs.* |\n"); //else if (iMethod==1) printf("| *Sample* | *A (R<%1.1f, SB)* | *B (R>%1.1f, SB)* | *C (R<%1.1f, Sig.B.)* | *D = B (R fit, SB) * C/A pred.* | *D = B*C/A pred.* | *D (R>%1.1f, Sig.B.) obs.* | *Ratio pred./obs.* | \n", R_CUT, R_CUT, R_CUT, R_CUT); if (iMethod==0) printf("| *Sample* | *A (DPhi>%1.1f, %s)* | *B (DPhi<%1.1f, %s)* | *C (DPhi>%1.1f, R>0.4)* | *D = B*C/A pred.* | *D (DPhi<%1.1f, R>0.4) obs.* | *Ratio pred./obs.* | *Pull (pred-obs)/error* | *KS test* |\n", DPHI_CUT, r_sb_cut.str().c_str(), DPHI_CUT, r_sb_cut.str().c_str(), DPHI_CUT, DPHI_CUT); else if (iMethod==1) printf("| *Sample* | *A%s (%s, <2 tag)* | *B%s (R>%1.1f, <2 tag)* | *C%s (%s, 2 tag)* | *D%s = B%s*C%s/A%s pred.* | *D%s (R>%1.1f, 2 tag) obs.* | *Ratio pred./obs.* | *Pull (pred-obs)/error* | *KS test* |\n", prime, r_sb_cut.str().c_str(), prime, R_CUT, prime, r_sb_cut.str().c_str(), prime, prime, prime, prime, prime, R_CUT); } TH1D *h_side_sum, *h_signal_sum; for (size_t iSample = 0; iSample<samples[iMethod].size(); ++iSample) { std::string canname = iMethod==0 ? std::string("DPhiBins")+(ABCD_prime ? "/RBins_0To1HadTop_" : "/RBins_2HadTop_")+samples[iMethod][iSample] : iMethod==1 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_"+samples[iMethod][iSample] : iMethod==2 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_Background" : iMethod==3 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_"+samples[iMethod][iSample] : ""; TCanvas *can = (TCanvas*)(f->Get(canname.c_str())); can = (TCanvas*)can->Clone(); can->Draw(); TH1D *h_side = (TH1D*)can->GetListOfPrimitives()->At(i_h_side[iMethod]); TH1D *h_signal = (TH1D*)can->GetListOfPrimitives()->At(i_h_signal[iMethod]); // Simulate different cross section by scaling a certain background if (iMethod==1) { TH1D *h_side_temp_scaled = (TH1D*)h_side->Clone(); h_side_temp_scaled->Scale(scale_factors[iSample]); TH1D *h_signal_temp_scaled = (TH1D*)h_signal->Clone(); h_signal_temp_scaled->Scale(scale_factors[iSample]); if (iSample==0) { h_side_sum = h_side_temp_scaled; h_signal_sum = h_signal_temp_scaled; } else { h_side_sum->Add(h_side_temp_scaled); h_signal_sum->Add(h_signal_temp_scaled); } } else if (iMethod==2) { h_side = h_side_sum; h_signal = h_signal_sum; } TH1D *h_pred =(TH1D*)h_side->Clone(); if (iMethod!=0&&rebin>1) { h_side->Rebin(rebin); h_signal->Rebin(rebin); h_pred->Rebin(rebin); } TLegend *leg = (TLegend*)can->GetListOfPrimitives()->At(can->GetListOfPrimitives()->GetEntries()-1); leg->SetX1(0.35); leg->SetX2(0.65); leg->SetY1(0.6); // Add ratio plot int y1 = 350; int y2 = 150; int mid2 = 10; can->Divide(1,2); // Pad 1 (80+500+20 x 40+500) TVirtualPad* p = can->cd(1); p->SetPad(0,(y2+60+mid2)/(y1+y2+100.0+mid2),1,1); p->SetTopMargin(40.0/(y1+40)); p->SetBottomMargin(0); p->SetRightMargin(0.05); p->SetLogy(1); h_side->GetYaxis()->SetRangeUser(1.00001e-4,1e4); h_side->Draw("HIST"); h_signal->Draw("SAMEHISTE1"); leg->Draw(); // Pad 2 (80+500+20 x 200+60) p = can->cd(2); p->SetGrid(0,1); p->SetPad(0,0,1,(y2+60+mid2)/(y1+y2+100.0+mid2)); p->SetTopMargin(((float)mid2)/(y2+60+mid2)); p->SetBottomMargin(60.0/(y2+60+mid2)); p->SetRightMargin(0.05); TH1D* ratio = (TH1D*)h_signal->Clone(); TH1D* div = (TH1D*)h_side->Clone(); //ratio->Scale(1/ratio->GetSumOfWeights()); double sum_bins_ratio = iMethod==0 ? ratio->Integral(): ratio->Integral(ratio->FindBin(R_CUT_LOW),ratio->FindBin(Rranges_ABCD[iMethod][3])); ratio->Scale(1/sum_bins_ratio); ratio->SetTitleSize(32.0/(y2+60+mid2),"xyz"); ratio->SetLabelSize(20.0/(y2+60+mid2),"xyz"); //ratio->Scale(1/div->GetSumOfWeights()); double sum_bins_div = iMethod==0 ? div->Integral(): div->Integral(div->FindBin(R_CUT_LOW),div->FindBin(Rranges_ABCD[iMethod][3])); div->Scale(1/sum_bins_div); ratio->Divide(div); //ratio->GetYaxis()->SetRangeUser(0,2); ratio->GetXaxis()->SetTitleOffset(0.7); ratio->GetYaxis()->SetNdivisions(305); ratio->GetYaxis()->SetTitle("Ratio (Norm.)"); ratio->GetYaxis()->SetTitleOffset(0.4); ratio->SetTitleSize(24.0/(y2+60+mid2),"y"); ratio->SetTitle(""); ratio->SetMarkerStyle(20); ratio->SetMarkerColor(1); ratio->SetLineColor(1); ratio->GetYaxis()->SetRangeUser(0,4); ratio->Draw("PE1"); TLine* l = new TLine(ratio->GetXaxis()->GetXmin(), 1, ratio->GetXaxis()->GetXmax(), 1); l->SetLineWidth(2); //l->SetLineColor(2); l->SetLineStyle(2); l->Draw(); gPad->Update(); // Fit ratio //TF1 *fit_ratio; //if (iMethod==1) { // fit_ratio = new TF1("fit_ratio","pol0", Rranges_ABCD[iMethod][0], Rranges_ABCD[iMethod][1]); // fit_ratio->SetLineColor(1); // ratio->Fit("fit_ratio","RE"); // fit_ratio->SetRange(Rranges_ABCD[iMethod][0], Rranges_ABCD[iMethod][2]); // fit_ratio->Draw("SAME"); //} p = can->cd(1); // calculate integrals double integral[2][2] = { { 0, 0 }, { 0, 0 } }; double integral_error[2][2] = { { 0, 0 }, { 0, 0 } }; double nevt[2][2] = { { 0, 0 }, { 0, 0 } }; //std::cout<<samples[iMethod][iSample]<<":"<<std::endl; for (int i=0; i<2; ++i) { for (int bin=1; bin<=h_side->GetNbinsX(); ++bin) { if (h_signal->GetXaxis()->GetBinLowEdge(bin)>=Rranges_ABCD[iMethod][i*2] && h_signal->GetXaxis()->GetBinUpEdge(bin)<=Rranges_ABCD[iMethod][i*2+1]) { //std::cout<<bin<<"="<<h_side->GetBinCenter(bin); //if (i==0) std::cout<<" in, "; //else std::cout<<" out, "; double c0 = h_side->GetBinContent(bin), c1 = h_signal->GetBinContent(bin); double e0 = h_side->GetBinError(bin), e1 = h_signal->GetBinError(bin); //std::cout<<h_signal->GetBinError(bin)<<" "<<sqrt(c1*weight[iSample])<<std::endl; if (baderror&&iMethod==1) { e0 = sqrt(c0*weight[iSample]); e1 = sqrt(c1*weight[iSample]); } nevt[0][i] += (int)(c0*c0/(e0*e0) + 0.5); nevt[1][i] += (int)(c1*c1/(e1*e1) + 0.5); integral[0][i] += c0; integral[1][i] += c1; //if (iMethod==1) { // weight bin by projected ratio (correction) // double bincent = h_signal->GetXaxis()->GetBinLowEdge(bin); // integral[0][1] *= fit_ratio->Eval(bincent); //} integral_error[0][i] += e0*e0; integral_error[1][i] += e1*e1; //if (iSample==0&&e1>0) std::cout<<bin<<" "<<c1<<" +- "<<e1*e1<<" nevt = "<<((int)(c1*c1/(e1*e1) + 0.5))<<std::endl; } } //if (iSample==1&&i==1) std::cout<<integral[1][i]<<" +- "<<integral_error[1][i]<<std::endl; integral_error[0][i] = sqrt(integral_error[0][i]); integral_error[1][i] = sqrt(integral_error[1][i]); } //std::cout<<nevt[1][1]<<std::endl; // predict yields using 2 methods (ABCD and constrained R-shape fit method combined) // ABCD method double a = integral[0][0], b = integral[0][1], c = integral[1][0], d = integral[1][1]; double a_err = integral_error[0][0], b_err = integral_error[0][1], c_err = integral_error[1][0], d_err = integral_error[1][1]; // Calculate error // z = x / y -> z_err = sqrt( (x*x*y_err*y_err + y*y*x_err*x_err)/(y*y*y*y) ) // z = x * y -> z_err = sqrt ( x*x*y_err*y_err + y*y*x_err*x_err ) double c_per_a_err = sqrt((c*c*a_err*a_err + a*a*c_err*c_err)/(a*a*a*a)); double d_abcd = b * (c/a), d_abcd_err = sqrt(b*b*c_per_a_err*c_per_a_err + (c/a)*(c/a)*b_err*b_err); double d_nevt = nevt[1][1]; double d_ratio = d_abcd / d; double d_ratio_err = sqrt((d_err/d)*(d_err/d) + (d_abcd_err/d_abcd)*(d_abcd_err/d_abcd))*d_ratio; double d_pull = (d_abcd-d)/sqrt(d_abcd_err*d_abcd_err + d_err*d_err); // Scaled plot h_pred->Scale(c/a); h_pred->SetLineColor(1); h_pred->SetLineStyle(2); h_pred->Draw("SAMEHIST"); leg->AddEntry(h_pred, "Prediction (ABCD)", "l"); double fit_integral[2][2], fit_integral_error[2][2], d_fit_comb = 0, d_fit_comb_err = 0; if (iMethod==1) { // Fit in the full range of NTop Sideband // Do fitting and calculate integrals TF1 *fit_side = new TF1("NTopSide_fit","exp([0]+[1]*x)", iMethod==2 ? 0.2 : sideband_fit_low_range[iSample], Rranges_ABCD[iMethod][3]); fit_side->SetLineColor(h_side->GetLineColor()); h_side->Fit("NTopSide_fit","QRE"); //fit_side->Draw("SAME"); double Rranges_ACfit[3] = { sideband_fit_low_range[iSample], Rranges_ABCD[iMethod][2], Rranges_ABCD[iMethod][3] }; for (int i=0; i<2; ++i) { fit_integral[0][i] = fit_side->Integral(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1); fit_integral_error[0][i] = fit_side->IntegralError(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1); } double par0 = fit_side->GetParameter(0), par0_error = fit_side->GetParError(0); double par1 = fit_side->GetParameter(1), par1_error = fit_side->GetParError(1); double par1min, par1max; fit_side->GetParLimits(1, par1min, par1max); // Fit in the Signal region // Fitting in sideband, get B area under curve and scale by C/A TF1 *fit_signal = new TF1("NTopSignal_RSide_fit","exp([0]+[1]*x)", Rranges_ACfit[0], Rranges_ABCD[iMethod][3]); fit_signal->SetLineColor(h_signal->GetLineColor()); //fit_signal->SetParameter(1, par1); //fit_signal->SetParLimits(1, par1min, par1max); h_signal->Fit("NTopSignal_RSide_fit","QREB"); //fit_signal->Draw("SAME"); for (int i=0; i<2; ++i) { fit_integral[1][i] = fit_signal->Integral(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1); fit_integral_error[1][i] = fit_signal->IntegralError(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1); } d_fit_comb = fit_integral[0][1] * (c/a); d_fit_comb_err = sqrt(fit_integral[0][1]*fit_integral[0][1]*c_per_a_err*c_per_a_err + (c/a)*(c/a)*fit_integral_error[0][1]*fit_integral_error[0][1]); TF1 *fit_pred = new TF1("Predicted_fit","exp([0]+[1]*x)", Rranges_ACfit[0], Rranges_ACfit[2]); fit_pred->SetLineColor(1); fit_pred->SetLineStyle(2); fit_pred->FixParameter(0, par0+std::log(c/a)); fit_pred->FixParameter(1, par1); h_signal->Fit("Predicted_fit","QREB+"); //fit_pred->Draw("SAME"); } // Save plot if (iMethod==3) samples[iMethod][iSample] = "T1tttt"; std::string name = samples[iMethod][iSample]; if (iMethod==2) name = "AllBkg"; if (save) can->SaveAs((out+"BkgEst/ABCD_closure_"+name+"."+ext).c_str()); // Check compatibility of prediction to observed distribution double ks_test = h_pred->KolmogorovTest(h_signal); if (iMethod==1) { sum_a += a; sum_b += b; sum_c += c; sum_d += d; sum_a_err += a_err*a_err; sum_b_err += b_err*b_err; sum_c_err += c_err*c_err; sum_d_err += d_err*d_err; sum_d_abcd += d_abcd; sum_d_abcd_err += d_abcd_err*d_abcd_err; sum_b_fit += fit_integral[0][1]; sum_b_fit_err += fit_integral_error[0][1]*fit_integral_error[0][1]; sum_d_fit += fit_integral[1][1]; sum_d_fit_err += fit_integral_error[1][1]*fit_integral_error[1][1]; sum_d_fit_comb += d_fit_comb; sum_d_fit_comb_err += d_fit_comb_err*d_fit_comb_err; sum_d_nevt += d_nevt; //printf(" %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f |\n", d_fit_comb, d_fit_comb_err, d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err); } if (latex) { printf("%s & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ &", samples[iMethod][iSample].c_str(), a, a_err, b, b_err, c, c_err); printf(" $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & %.2f & %.2f \\\\\n", d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err, d_pull, ks_test); } else { printf("| %s | %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f |", samples[iMethod][iSample].c_str(), a, a_err, b, b_err, c, c_err); printf(" %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f | %.2f |\n", d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err, d_pull, ks_test); } // Combining best methods if ((iMethod==0&&iSample==0)||(iMethod==1&&iSample!=0)) { comb_d_abcd += d_abcd; comb_d += d; comb_d_abcd_err += d_abcd_err*d_abcd_err; comb_d_err += d_err*d_err; } } if (iMethod==1) { sum_a_err = sqrt(sum_a_err); sum_b_err = sqrt(sum_b_err); sum_c_err = sqrt(sum_c_err); sum_d_err = sqrt(sum_d_err); sum_b_fit_err = sqrt(sum_b_fit_err); sum_d_fit_err = sqrt(sum_d_fit_err); sum_d_fit_comb_err = sqrt(sum_d_fit_comb_err); double sum_d_ratio = sum_d_abcd / sum_d; double sum_d_ratio_err = sqrt((sum_d_err/sum_d)*(sum_d_err/sum_d) + (sum_d_abcd_err/sum_d_abcd)*(sum_d_abcd_err/sum_d_abcd))*sum_d_ratio; double sum_d_pull = (sum_d_abcd-sum_d)/sqrt(sum_d_abcd_err*sum_d_abcd_err + sum_d_err*sum_d_err); if (latex) { printf("\\hline\n"); printf("Sum Bkg. & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ &", sum_a, sum_a_err, sum_b, sum_b_err, sum_c, sum_c_err); printf(" $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & %.2f & \\\\\n", sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err, sum_d_pull); } else { //printf("| Sum Bkg.| %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f |", sum_a, sum_a_err, sum_b_fit, sum_b_fit_err, sum_b, sum_b_err, sum_c, sum_c_err); printf("| Sum Bkg.| %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f |", sum_a, sum_a_err, sum_b, sum_b_err, sum_c, sum_c_err); //printf(" %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f |\n", sum_d_fit_comb, sum_d_fit_comb_err, sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err); printf(" %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f | - |\n", sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err, sum_d_pull); } } else if (iMethod==2&&samples[0].size()) { double comb_d_ratio = comb_d_abcd / comb_d; double comb_d_ratio_err = sqrt((comb_d_err/comb_d)*(comb_d_err/comb_d) + (comb_d_abcd_err/comb_d_abcd)*(comb_d_abcd_err/comb_d_abcd))*comb_d_ratio; double comb_d_pull = (comb_d_abcd-comb_d)/sqrt(comb_d_abcd_err*comb_d_abcd_err + comb_d_err*comb_d_err); if (latex) { printf("\\hline\n"); printf("\\hline\n"); printf("Combined Bkg. & & & & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & $%.2f \\pm %.2f$ & %.2f & \\\\\n", comb_d_abcd, comb_d_abcd_err, comb_d, comb_d_err, comb_d_ratio, comb_d_ratio_err, comb_d_pull); printf("\\hline\n"); } else { printf("| Combined Bkg.| | | | %.2f +- %.2f | %.2f +- %.2f | %.2f +- %.2f | %.2f | - |\n", comb_d_abcd, comb_d_abcd_err, comb_d, comb_d_err, comb_d_ratio, comb_d_ratio_err, comb_d_pull); } } } if (latex) { printf("\\hline\n"); printf("\\end{tabular}\n"); printf("\\end{center}\n"); printf("\\end{table*}\n"); } if (save) gApplication->Terminate(); }
void ptBestFit(float BIN_SIZE=5.0,bool BLIND=false,TString MASS,TString NAME) { gROOT->ProcessLine(".x ../../common/styleCMSTDR.C"); gSystem->Load("libHiggsAnalysisCombinedLimit.so"); gROOT->ForceStyle(); gStyle->SetOptStat(0); gStyle->SetOptTitle(0); gROOT->SetBatch(1); gStyle->SetPadRightMargin(0.04); gStyle->SetPadLeftMargin(0.16); gStyle->SetPadTopMargin(0.06); gStyle->SetPadBottomMargin(0.10); gStyle->SetTitleFont(42,"XY"); gStyle->SetTitleSize(0.0475,"XY"); gStyle->SetTitleOffset(0.9,"X"); gStyle->SetTitleOffset(1.5,"Y"); gStyle->SetLabelSize(0.0375,"XY"); RooMsgService::instance().setSilentMode(kTRUE); for(int i=0;i<2;i++) { RooMsgService::instance().setStreamStatus(i,kFALSE); } float XMIN = 80; float XMAX = 200; TFile *f1 = TFile::Open("datacards/datacard_m"+MASS+"_"+NAME+".root"); TFile *f2 = TFile::Open("combine/mlfit.vbfHbb_"+NAME+"_mH"+MASS+".root"); TFile *f3 = TFile::Open("root/sig_shapes_workspace_B80-200.root"); TFile *f4 = TFile::Open("root/data_shapes_workspace_"+NAME+".root"); RooWorkspace *w = (RooWorkspace*)f1->Get("w"); //w->Print(); RooAbsPdf *bkg_model = (RooAbsPdf*)w->pdf("model_s"); RooFitResult *res_s = (RooFitResult*)f2->Get("fit_s"); RooFitResult *res_b = (RooFitResult*)f2->Get("fit_b"); RooRealVar *rFit = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("r"); RooDataSet *data = (RooDataSet*)w->data("data_obs"); int nparS=0,nparB=0; cout << res_s->floatParsFinal().getSize() << endl; cout << res_b->floatParsFinal().getSize() << endl; nparS = res_s->floatParsFinal().getSize(); nparB = res_b->floatParsFinal().getSize(); float chi2sumS = 0.; float chi2sumB = 0.; int nparsum = 0; // if (BLIND) { // res_b->Print(); // } // else { // res_s->Print(); // } w->allVars().assignValueOnly(res_s->floatParsFinal()); // w->Print(); // w->allVars()->Print(); RooWorkspace *wSig = (RooWorkspace*)f3->Get("w"); RooWorkspace *wDat = (RooWorkspace*)f4->Get("w"); const RooSimultaneous *sim = dynamic_cast<const RooSimultaneous *> (bkg_model); const RooAbsCategoryLValue &cat = (RooAbsCategoryLValue &) sim->indexCat(); TList *datasets = data->split(cat,true); TIter next(datasets); //int count = 0; for(RooAbsData *ds = (RooAbsData*)next();ds != 0; ds = (RooAbsData*)next()) { //if (count > 0) return 0; //count++; RooAbsPdf *pdfi = sim->getPdf(ds->GetName()); RooArgSet *obs = (RooArgSet*)pdfi->getObservables(ds); RooRealVar *x = dynamic_cast<RooRealVar *>(obs->first()); RooRealVar *yield_vbf = (RooRealVar*)wSig->var("yield_signalVBF_mass"+MASS+"_"+TString(ds->GetName())); RooRealVar *yield_gf = (RooRealVar*)wSig->var("yield_signalGF_mass"+MASS+"_"+TString(ds->GetName())); TString ds_name(ds->GetName()); //----- get the QCD normalization ----------- RooRealVar *qcd_norm_final = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("CMS_vbfbb_qcd_norm_"+ds_name); RooRealVar *qcd_yield = (RooRealVar*)wDat->var("yield_data_"+ds_name); float Nqcd = exp(log(1.5)*qcd_norm_final->getVal())*qcd_yield->getVal(); float eNqcd = log(1.5)*qcd_norm_final->getError()*Nqcd; cout<<"QCD normalization = "<<Nqcd<<" +/- "<<eNqcd<<endl; TH1 *hCoarse = (TH1*)ds->createHistogram("coarseHisto_"+ds_name,*x); float norm = hCoarse->Integral(); int rebin = BIN_SIZE/hCoarse->GetBinWidth(1); hCoarse->Rebin(rebin); float MIN_VAL = TMath::Max(0.9*hCoarse->GetBinContent(hCoarse->GetMinimumBin()),1.0); float MAX_VAL = 1.3*hCoarse->GetBinContent(hCoarse->GetMaximumBin()); RooDataHist ds_coarse("ds_coarse_"+ds_name,"ds_coarse_"+ds_name,*x,hCoarse); TH1F *hBlind = (TH1F*)hCoarse->Clone("blindHisto_"+ds_name); for(int i=0;i<hBlind->GetNbinsX();i++) { double x0 = hBlind->GetBinCenter(i+1); if (x0 > 100 && x0 < 150) { hBlind->SetBinContent(i+1,0); hBlind->SetBinError(i+1,0); } } RooDataHist ds_blind("ds_blind_"+ds_name,"ds_blind_"+ds_name,*x,hBlind); RooHist *hresid,*hresid0; RooPlot *frame1 = x->frame(); RooPlot *frame2 = x->frame(); if (BLIND) { //cout << "Blind case: " << ds_coarse.GetName() << endl; ds_coarse.plotOn(frame1,LineColor(0),MarkerColor(0)); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(3)); ds_blind.plotOn(frame1); hresid = frame1->residHist(); frame2->addPlotable(hresid,"pE1"); } else { //cout << "Non-blind case: " << ds_coarse.GetName() << endl; ds_coarse.plotOn(frame1); pdfi->plotOn(frame1); //cout << pdfi->getParameters(ds_coarse)->selectByAttrib("Constant",kFALSE)->getSize() << endl; cout<<"chi2/ndof (bkg+sig) = "<<frame1->chiSquare()<<endl; cout << ds_coarse.numEntries() << endl; chi2sumS += frame1->chiSquare()*ds_coarse.numEntries(); nparsum += ds_coarse.numEntries(); //hresid0 = frame1->residHist(); //pdfi->plotOn(frame1,VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name),LineWidth(2),LineStyle(5),LineColor(kGreen+2)); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack)); cout<<"chi2/ndof (bkg) = "<<frame1->chiSquare()<<endl; chi2sumB += frame1->chiSquare()*ds_coarse.numEntries(); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); hresid = frame1->residHist(); frame2->addPlotable(hresid,"pE1"); float yield_sig = rFit->getValV()*(yield_vbf->getValV()+yield_gf->getValV()); RooAbsPdf *signal_pdf = (RooAbsPdf*)w->pdf("shapeSig_qqH_"+ds_name); signal_pdf->plotOn(frame2,LineWidth(2),LineColor(kRed),Normalization(yield_sig,RooAbsReal::NumEvent),MoveToBack()); } // hresid0->Print(); // hresid->Print(); // double x2,y2; // for (int i=0; i<3; ++i) { // hresid0->GetPoint(i,x2,y2); // cout << "BKG+SIG\t" << x2 << "\t" << y2 << endl; // hresid->GetPoint(i,x2,y2); // cout << "BKG\t" << x2 << "\t" << y2 << endl; // ds_coarse.get(i); // cout << ds_coarse.weightError(RooAbsData::SumW2) << endl; // cout << endl; // } TCanvas* canFit = new TCanvas("Higgs_fit_"+ds_name,"Higgs_fit_"+ds_name,900,750); canFit->cd(1)->SetBottomMargin(0.4); frame1->SetMinimum(MIN_VAL); frame1->SetMaximum(MAX_VAL); frame1->GetYaxis()->SetNdivisions(510); frame1->GetXaxis()->SetTitleSize(0); frame1->GetXaxis()->SetLabelSize(0); frame1->GetYaxis()->SetTitle(TString::Format("Events / %1.1f GeV",BIN_SIZE)); frame1->Draw(); gPad->Update(); TList *list = (TList*)gPad->GetListOfPrimitives(); //list->Print(); TH1F *hUncH = new TH1F("hUncH"+ds_name,"hUncH"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUncL = new TH1F("hUncL"+ds_name,"hUncL"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUnc2H = new TH1F("hUnc2H"+ds_name,"hUnc2H"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUnc2L = new TH1F("hUnc2L"+ds_name,"hUnc2L"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUncC = new TH1F("hUncC"+ds_name,"hUncC"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); RooCurve *errorBand,*gFit,*gQCDFit,*gBkgFit; //list->Print(); if (BLIND) { errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); } else { //errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband"); errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"); } gQCDFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+"]"); gBkgFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); for(int i=0;i<hUncH->GetNbinsX();i++) { double x0 = hUncH->GetBinCenter(i+1); double e1 = fabs(errorBand->Eval(x0)-gBkgFit->Eval(x0)); //double e1 = fabs(errorBand->Eval(x0)-gFit->Eval(x0)); double e2 = eNqcd/hUncH->GetNbinsX(); hUncH->SetBinContent(i+1,sqrt(pow(e2,2)+pow(e1,2))); hUnc2H->SetBinContent(i+1,2*sqrt(pow(e2,2)+pow(e1,2))); hUncL->SetBinContent(i+1,-sqrt(pow(e2,2)+pow(e1,2))); hUnc2L->SetBinContent(i+1,-2*sqrt(pow(e2,2)+pow(e1,2))); hUncC->SetBinContent(i+1,0.); } TPad* pad = new TPad("pad", "pad", 0., 0., 1., 1.); pad->SetTopMargin(0.63); pad->SetFillColor(0); pad->SetFillStyle(0); pad->Draw(); pad->cd(0); hUnc2H->GetXaxis()->SetTitle("m_{bb} (GeV)"); hUnc2H->GetYaxis()->SetTitle("Data - Bkg"); //hUnc2H->GetYaxis()->SetTitle("Data - Fit"); double YMAX = 1.1*frame2->GetMaximum(); double YMIN = -1.1*frame2->GetMaximum(); hUnc2H->GetYaxis()->SetRangeUser(YMIN,YMAX); hUnc2H->GetYaxis()->SetNdivisions(507); // hUnc2H->GetXaxis()->SetTitleOffset(0.9); // hUnc2H->GetYaxis()->SetTitleOffset(1.0); hUnc2H->GetYaxis()->SetTickLength(0.0); // hUnc2H->GetYaxis()->SetTitleSize(0.05); // hUnc2H->GetYaxis()->SetLabelSize(0.04); hUnc2H->GetYaxis()->CenterTitle(kTRUE); hUnc2H->SetFillColor(kGreen); hUnc2L->SetFillColor(kGreen); hUncH->SetFillColor(kYellow); hUncL->SetFillColor(kYellow); hUncC->SetLineColor(kBlack); hUncC->SetLineStyle(7); hUnc2H->Draw("HIST"); hUnc2L->Draw("same HIST"); hUncH->Draw("same HIST"); hUncL->Draw("same HIST"); hUncC->Draw("same HIST"); frame2->GetYaxis()->SetTickLength(0.03/0.4); frame2->Draw("same"); TList *list1 = (TList*)gPad->GetListOfPrimitives(); //list1->Print(); RooCurve *gSigFit = (RooCurve*)list1->FindObject("shapeSig_qqH_"+ds_name+"_Norm[mbbReg_"+ds_name+"]"); TLegend *leg = new TLegend(0.70,0.61,0.94,1.-gStyle->GetPadTopMargin()-0.01); leg->SetTextFont(42); leg->SetFillStyle(-1); //leg->SetHeader(ds_name+" (m_{H}="+MASS+")"); leg->SetHeader(TString::Format("Category %d",atoi(ds_name(3,1).Data())+1)); leg->AddEntry(hBlind,"Data","P"); if (!BLIND) { leg->AddEntry(gSigFit,"Fitted signal","L"); } TLine *gEmpty = new TLine(0.0,0.0,0.0,0.0); gEmpty->SetLineWidth(0); TLegendEntry *l1 = leg->AddEntry(gEmpty,"(m_{H} = "+MASS+" GeV)",""); l1->SetTextSize(0.038*0.97*0.85); leg->AddEntry(gFit,"Bkg. + signal","L"); leg->AddEntry(gBkgFit,"Bkg.","L"); leg->AddEntry(gQCDFit,"QCD","L"); leg->AddEntry(hUnc2H,"2#sigma bkg. unc.","F"); leg->AddEntry(hUncH,"1#sigma bkg. unc.","F"); leg->SetFillColor(0); leg->SetBorderSize(0); leg->SetTextFont(42); leg->SetTextSize(0.038*0.98); leg->Draw(); leg->SetY1(leg->GetY2()-leg->GetNRows()*0.045*0.96); TPaveText *paveCMS = new TPaveText(gStyle->GetPadLeftMargin()+0.02,0.7,gStyle->GetPadLeftMargin()+0.15,1.-gStyle->GetPadTopMargin()-0.01,"NDC"); paveCMS->SetTextFont(62); paveCMS->SetTextSize(gStyle->GetPadTopMargin()*3./4.); paveCMS->SetBorderSize(0); paveCMS->SetFillStyle(-1); paveCMS->SetTextAlign(12); paveCMS->AddText("CMS"); paveCMS->Draw(); gPad->Update(); paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin()); TPaveText *paveLumi = new TPaveText(0.5,1.-gStyle->GetPadTopMargin(),0.98,1.00,"NDC"); paveLumi->SetTextFont(42); paveLumi->SetTextSize(gStyle->GetPadTopMargin()*3./4.); paveLumi->SetBorderSize(0); paveLumi->SetFillStyle(-1); paveLumi->SetTextAlign(32); paveLumi->AddText(TString::Format("%.1f fb^{-1} (8TeV)",(atoi(ds_name(3,1).Data())<4 ? 19.8 : 18.3)).Data());//+ 18.2 ; paveLumi->Draw(); TString path="."; //TString path="BiasV10_limit_BRN5p4_dX0p1_B80-200_CAT0-6/output/"; system(TString::Format("[ ! -d %s/plot ] && mkdir %s/plot",path.Data(),path.Data()).Data()); system(TString::Format("[ ! -d %s/plot/fits ] && mkdir %s/plot/fits",path.Data(),path.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.png",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.eps",path.Data(),MASS.Data(),ds_name.Data()).Data()); TText *l = (TText*)paveCMS->AddText("Preliminary"); l->SetTextFont(52); paveCMS->Draw(); gPad->Update(); paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.png",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.eps",path.Data(),MASS.Data(),ds_name.Data()).Data()); delete ds; } cout << "chi2sumS: " << chi2sumS << endl; cout << "chi2sumB: " << chi2sumB << endl; cout << "nparS: " << nparS << endl; cout << "nparB: " << nparB << endl; cout << "nbinsum: " << nparsum << endl; cout << "chi2sumS/(nbinsum - nparS): " << chi2sumS / (float)(nparsum - nparS) << endl; cout << "chi2sumB/(nbinsum - nparB): " << chi2sumB / (float)(nparsum - nparB) << endl; delete datasets; }