bool mrpt::utils::operator == (const TMatchingPairList& a,const TMatchingPairList& b) { if (a.size()!=b.size()) return false; for (TMatchingPairList::const_iterator it1=a.begin(),it2=b.begin();it1!=a.end();it1++,it2++) if (! ( (*it1)==(*it2))) return false; return true; }
/*--------------------------------------------------------------- robustRigidTransformation This works as follows: - Repeat "ransac_nSimulations" times: - Randomly pick TWO correspondences from the set "in_correspondences". - Compute the associated rigid transformation. - For "ransac_maxSetSize" randomly selected correspondences, test for "consensus" with the current group: - If if is compatible (ransac_maxErrorXY, ransac_maxErrorPHI), grow the "consensus set" - If not, do not add it. ---------------------------------------------------------------*/ void scanmatching::robustRigidTransformation( TMatchingPairList &in_correspondences, poses::CPosePDFSOG &out_transformation, float normalizationStd, unsigned int ransac_minSetSize, unsigned int ransac_maxSetSize, float ransac_mahalanobisDistanceThreshold, unsigned int ransac_nSimulations, TMatchingPairList *out_largestSubSet, bool ransac_fuseByCorrsMatch, float ransac_fuseMaxDiffXY, float ransac_fuseMaxDiffPhi, bool ransac_algorithmForLandmarks, double probability_find_good_model, unsigned int ransac_min_nSimulations ) { size_t i,N = in_correspondences.size(); unsigned int maxThis=0, maxOther=0; CPosePDFGaussian temptativeEstimation, referenceEstimation; TMatchingPairList::iterator matchIt; std::vector<bool> alreadySelectedThis; std::vector<bool> alreadySelectedOther; //#define DEBUG_OUT MRPT_START // Asserts: if( N < ransac_minSetSize ) { // Nothing to do! out_transformation.clear(); return; } // Find the max. index of "this" and "other: for (matchIt=in_correspondences.begin();matchIt!=in_correspondences.end(); matchIt++) { maxThis = max(maxThis , matchIt->this_idx ); maxOther= max(maxOther, matchIt->other_idx ); } // Fill out 2 arrays indicating whether each element has a correspondence: std::vector<bool> hasCorrThis(maxThis+1,false); std::vector<bool> hasCorrOther(maxOther+1,false); unsigned int howManyDifCorrs = 0; //for (i=0;i<N;i++) for (matchIt=in_correspondences.begin();matchIt!=in_correspondences.end(); matchIt++) { if (!hasCorrThis[matchIt->this_idx] && !hasCorrOther[matchIt->other_idx] ) { hasCorrThis[matchIt->this_idx] = true; hasCorrOther[matchIt->other_idx] = true; howManyDifCorrs++; } } // Clear the set of output particles: out_transformation.clear(); // The max. number of corrs! //ransac_maxSetSize = min(ransac_maxSetSize, max(2,(howManyDifCorrs-1))); ransac_maxSetSize = min(ransac_maxSetSize, max((unsigned int)2,howManyDifCorrs) ); //printf("howManyDifCorrs=%u ransac_maxSetSize=%u\n",howManyDifCorrs,ransac_maxSetSize); //ASSERT_( ransac_maxSetSize>=ransac_minSetSize ); if ( ransac_maxSetSize < ransac_minSetSize ) { // Nothing we can do here!!! :~$ if (out_largestSubSet!=NULL) { TMatchingPairList emptySet; *out_largestSubSet = emptySet; } out_transformation.clear(); return; } //#define AVOID_MULTIPLE_CORRESPONDENCES #ifdef AVOID_MULTIPLE_CORRESPONDENCES unsigned k; // Find duplicated landmarks (from SIFT features with different descriptors,etc...) // this is to avoid establishing multiple correspondences for the same physical point! // ------------------------------------------------------------------------------------------------ std::vector<vector_int> listDuplicatedLandmarksThis(maxThis+1); ASSERT_(N>=1); for (k=0;k<N-1;k++) { vector_int duplis; for (unsigned j=k;j<N-1;j++) { if ( in_correspondences[k].this_x == in_correspondences[j].this_x && in_correspondences[k].this_y == in_correspondences[j].this_y && in_correspondences[k].this_z == in_correspondences[j].this_z ) duplis.push_back(in_correspondences[j].this_idx); } listDuplicatedLandmarksThis[in_correspondences[k].this_idx] = duplis; } std::vector<vector_int> listDuplicatedLandmarksOther(maxOther+1); for (k=0;k<N-1;k++) { vector_int duplis; for (unsigned j=k;j<N-1;j++) { if ( in_correspondences[k].other_x == in_correspondences[j].other_x && in_correspondences[k].other_y == in_correspondences[j].other_y && in_correspondences[k].other_z == in_correspondences[j].other_z ) duplis.push_back(in_correspondences[j].other_idx); } listDuplicatedLandmarksOther[in_correspondences[k].other_idx] = duplis; } #endif std::deque<TMatchingPairList> alreadyAddedSubSets; std::vector<size_t> corrsIdxs( N), corrsIdxsPermutation; for (i=0;i<N;i++) corrsIdxs[i]= i; // If we put this out of the loop, each correspondence will be used just ONCE! /**/ alreadySelectedThis.clear(); alreadySelectedThis.resize(maxThis+1,false); alreadySelectedOther.clear(); alreadySelectedOther.resize(maxOther+1, false); /**/ //~ CPosePDFGaussian temptativeEstimation; // ------------------------- // The RANSAC loop // ------------------------- size_t largest_consensus_yet = 0; // Used for dynamic # of steps const bool use_dynamic_iter_number = ransac_nSimulations==0; if (use_dynamic_iter_number) { ASSERT_(probability_find_good_model>0 && probability_find_good_model<1); // Set an initial # of iterations: ransac_nSimulations = 10; // It doesn't matter actually, since will be changed in the first loop } i = 0; while (i<ransac_nSimulations) // ransac_nSimulations can be dynamic { i++; TMatchingPairList subSet,temptativeSubSet; // Select a subset of correspondences at random: if (ransac_algorithmForLandmarks) { alreadySelectedThis.clear(); alreadySelectedThis.resize(maxThis+1,false); alreadySelectedOther.clear(); alreadySelectedOther.resize(maxOther+1, false); } else { // For points: Do not repeat the corrs, and take the numer of corrs as weights } // Try to build a subsetof "ransac_maxSetSize" (maximum) elements that achieve consensus: // ------------------------------------------------------------------------------------------ // First: Build a permutation of the correspondences to pick from it sequentially: randomGenerator.permuteVector(corrsIdxs,corrsIdxsPermutation ); for (unsigned int j=0;j<ransac_maxSetSize;j++) { ASSERT_(j<corrsIdxsPermutation.size()) size_t idx = corrsIdxsPermutation[j]; matchIt = in_correspondences.begin() + idx; ASSERT_( matchIt->this_idx < alreadySelectedThis.size() ); ASSERT_( matchIt->other_idx < alreadySelectedOther.size() ); if ( !(alreadySelectedThis [ matchIt->this_idx ] && alreadySelectedOther[ matchIt->other_idx]) ) // if ( !alreadySelectedThis [ matchIt->this_idx ] && // !alreadySelectedOther[ matchIt->other_idx] ) { // mark as "selected" for this pair not to be selected again: // ***NOTE***: That the expresion of the "if" above requires the // same PAIR not to be selected again, but one of the elements // may be selected again with a diferent matching! This improves the // robustness and posibilities of the algorithm! (JLBC - NOV/2006) #ifndef AVOID_MULTIPLE_CORRESPONDENCES alreadySelectedThis[ matchIt->this_idx ]= true; alreadySelectedOther[ matchIt->other_idx ] = true; #else for (vector_int::iterator it1 = listDuplicatedLandmarksThis[matchIt->this_idx].begin();it1!=listDuplicatedLandmarksThis[matchIt->this_idx].end();it1++) alreadySelectedThis[ *it1 ] = true; for (vector_int::iterator it2 = listDuplicatedLandmarksOther[matchIt->other_idx].begin();it2!=listDuplicatedLandmarksOther[matchIt->other_idx].end();it2++) alreadySelectedOther[ *it2 ] = true; #endif if (subSet.size()<2) { // ------------------------------------------------------------------------------------------------------ // If we are within the first two correspondences, just add them to the subset: // ------------------------------------------------------------------------------------------------------ subSet.push_back( *matchIt ); if (subSet.size()==2) { temptativeSubSet = subSet; // JLBC: Modification DEC/2007: If we leave only ONE correspondence in the ref. set // the algorithm will be pretty much sensible to reject bad correspondences: temptativeSubSet.erase( temptativeSubSet.begin() + (temptativeSubSet.size() -1) ); // Perform estimation: scanmatching::leastSquareErrorRigidTransformation( subSet, referenceEstimation.mean, &referenceEstimation.cov ); // Normalized covariance: scale! referenceEstimation.cov *= square(normalizationStd); // Additional filter: // If the correspondences as such the transformation has a high ambiguity, we discard it! if ( referenceEstimation.cov(2,2)>=square(DEG2RAD(5.0f)) ) { // Remove this correspondence & try again with a different pair: subSet.erase( subSet.begin() + (subSet.size() -1) ); } else { } } } else { // ------------------------------------------------------------------------------------------------------ // The normal case: // - test for "consensus" with the current group: // - If it is compatible (ransac_maxErrorXY, ransac_maxErrorPHI), grow the "consensus set" // - If not, do not add it. // ------------------------------------------------------------------------------------------------------ // Compute the temptative new estimation (matchIt will be removed after the test!): temptativeSubSet.push_back( *matchIt ); scanmatching::leastSquareErrorRigidTransformation( temptativeSubSet, temptativeEstimation.mean, &temptativeEstimation.cov ); // Normalized covariance: scale! temptativeEstimation.cov *= square(normalizationStd); // Additional filter: // If the correspondences as such the transformation has a high ambiguity, we discard it! if ( temptativeEstimation.cov(2,2)<square(DEG2RAD(5.0f)) ) { // ASSERT minimum covariance!! /*temptativeEstimation.cov(0,0) = max( temptativeEstimation.cov(0,0), square( 0.03f ) ); temptativeEstimation.cov(1,1) = max( temptativeEstimation.cov(1,1), square( 0.03f ) ); referenceEstimation.cov(0,0) = max( referenceEstimation.cov(0,0), square( 0.03f ) ); referenceEstimation.cov(1,1) = max( referenceEstimation.cov(1,1), square( 0.03f ) ); */ temptativeEstimation.cov(2,2) = max( temptativeEstimation.cov(2,2), square( DEG2RAD(0.2) ) ); referenceEstimation.cov(2,2) = max( referenceEstimation.cov(2,2), square( DEG2RAD(0.2) ) ); // Test for compatibility: bool passTest; if (ransac_algorithmForLandmarks) { // Compatibility test: Mahalanobis distance between Gaussians: double mahaDist = temptativeEstimation.mahalanobisDistanceTo( referenceEstimation ); passTest = mahaDist < ransac_mahalanobisDistanceThreshold; } else { // Compatibility test: Euclidean distances double diffXY = referenceEstimation.mean.distanceTo( temptativeEstimation.mean ); double diffPhi = fabs( math::wrapToPi( referenceEstimation.mean.phi() - temptativeEstimation.mean.phi() ) ); passTest = diffXY < 0.02f && diffPhi < DEG2RAD(2.0f); //FILE *f=os::fopen("hist.txt","at"); //fprintf(f,"%f %f\n",diffXY, RAD2DEG(diffPhi) ); //fclose(f); } if ( passTest ) { // OK, consensus passed!! subSet.push_back( *matchIt ); referenceEstimation = temptativeEstimation; } else { // Test failed! //printf("Discarded!:\n"); //std::cout << "temptativeEstimation:" << temptativeEstimation << " referenceEstimation:" << referenceEstimation << " mahaDist:" << mahaDist << "\n"; } } else { // Test failed! //printf("Discarded! stdPhi=%f\n",RAD2DEG(sqrt(temptativeEstimation.cov(2,2)))); } // Remove the temporaryy added last correspondence: temptativeSubSet.pop_back(); } // end else "normal case" } // end "if" the randomly selected item is new } // end for j // Save the estimation result as a "particle", only if the subSet contains // "ransac_minSetSize" elements at least: if (subSet.size()>=ransac_minSetSize) { // If this subset was previously added to the SOG, just increment its weight // and do not add a new mode: int indexFound = -1; // JLBC Added DEC-2007: An alternative (optional) method to fuse Gaussian modes: if (!ransac_fuseByCorrsMatch) { // Find matching by approximate match in the X,Y,PHI means // ------------------------------------------------------------------- // Recompute referenceEstimation from all the corrs: scanmatching::leastSquareErrorRigidTransformation( subSet, referenceEstimation.mean, &referenceEstimation.cov ); // Normalized covariance: scale! referenceEstimation.cov *= square(normalizationStd); for (size_t i=0;i<out_transformation.size();i++) { double diffXY = out_transformation.get(i).mean.distanceTo( referenceEstimation.mean ); double diffPhi = fabs( math::wrapToPi( out_transformation.get(i).mean.phi() - referenceEstimation.mean.phi() ) ); if ( diffXY < ransac_fuseMaxDiffXY && diffPhi < ransac_fuseMaxDiffPhi ) { //printf("Match by distance found: distXY:%f distPhi=%f deg\n",diffXY,RAD2DEG(diffPhi)); indexFound = i; break; } } } else { // Find matching mode by exact match in the list of correspondences: // ------------------------------------------------------------------- // Sort "subSet" in order to compare them easily! //std::sort( subSet.begin(), subSet.end() ); // Try to find matching corrs: for (size_t i=0;i<alreadyAddedSubSets.size();i++) { if ( subSet == alreadyAddedSubSets[i] ) { indexFound = i; break; } } } if (indexFound!=-1) { // This is an alrady added mode: if (ransac_algorithmForLandmarks) out_transformation.get(indexFound).log_w = log(1+ exp(out_transformation.get(indexFound).log_w)); else out_transformation.get(indexFound).log_w = log(subSet.size()+ exp(out_transformation.get(indexFound).log_w)); } else { // Add a new mode to the SOG: alreadyAddedSubSets.push_back( subSet ); CPosePDFSOG::TGaussianMode newSOGMode; if (ransac_algorithmForLandmarks) newSOGMode.log_w = 0; //log(1); else newSOGMode.log_w = log(static_cast<double>(subSet.size())); scanmatching::leastSquareErrorRigidTransformation( subSet, newSOGMode.mean, &newSOGMode.cov ); // Normalized covariance: scale! newSOGMode.cov *= square(normalizationStd); // Add a new mode to the SOG! out_transformation.push_back(newSOGMode); } } // end if subSet.size()>=ransac_minSetSize // Dynamic # of steps: if (use_dynamic_iter_number) { const size_t ninliers = subSet.size(); if (largest_consensus_yet<ninliers ) { largest_consensus_yet = ninliers; // Update estimate of N, the number of trials to ensure we pick, // with probability p, a data set with no outliers. const double fracinliers = ninliers/static_cast<double>(howManyDifCorrs); // corrsIdxs.size()); double pNoOutliers = 1 - pow(fracinliers,static_cast<double>(2.0 /*minimumSizeSamplesToFit*/ )); pNoOutliers = std::max( std::numeric_limits<double>::epsilon(), pNoOutliers); // Avoid division by -Inf pNoOutliers = std::min(1.0 - std::numeric_limits<double>::epsilon() , pNoOutliers); // Avoid division by 0. // Number of ransac_nSimulations = log(1-probability_find_good_model)/log(pNoOutliers); if (ransac_nSimulations<ransac_min_nSimulations) ransac_nSimulations = ransac_min_nSimulations; //if (verbose) cout << "[scanmatching::RANSAC] Iter #" << i << " Estimated number of iters: " << ransac_nSimulations << " pNoOutliers = " << pNoOutliers << " #inliers: " << ninliers << endl; } } // Save the largest subset: if (out_largestSubSet!=NULL) { if (subSet.size()>out_largestSubSet->size()) { *out_largestSubSet = subSet; } } #ifdef DEBUG_OUT printf("[RANSAC] Sim #%i/%i \t--> |subSet|=%u \n", (int)i, (int)ransac_nSimulations, (unsigned)subSet.size() ); #endif } // end for i // Set the weights of the particles to sum the unity: out_transformation.normalizeWeights(); // Now the estimation is in the particles set! // Done! MRPT_END_WITH_CLEAN_UP( \ printf("maxThis=%u, maxOther=%u\n",static_cast<unsigned int>(maxThis), static_cast<unsigned int>(maxOther)); \ printf("N=%u\n",static_cast<unsigned int>(N)); \ printf("Saving '_debug_in_correspondences.txt'..."); \ in_correspondences.dumpToFile("_debug_in_correspondences.txt"); \ printf("Ok\n"); \ printf("Saving '_debug_out_transformation.txt'..."); \ out_transformation.saveToTextFile("_debug_out_transformation.txt"); \ printf("Ok\n"); );
/*--------------------------------------------------------------- robustRigidTransformation The technique was described in the paper: J.L. Blanco, J. Gonzalez-Jimenez and J.A. Fernandez-Madrigal. "A robust, multi-hypothesis approach to matching occupancy grid maps". Robotica, available on CJO2013. doi:10.1017/S0263574712000732. http://journals.cambridge.org/action/displayAbstract?aid=8815308 This works as follows: - Repeat "results.ransac_iters" times: - Randomly pick TWO correspondences from the set "in_correspondences". - Compute the associated rigid transformation. - For "ransac_maxSetSize" randomly selected correspondences, test for "consensus" with the current group: - If if is compatible (ransac_maxErrorXY, ransac_maxErrorPHI), grow the "consensus set" - If not, do not add it. ---------------------------------------------------------------*/ bool tfest::se2_l2_robust( const mrpt::tfest::TMatchingPairList& in_correspondences, const double normalizationStd, const TSE2RobustParams& params, TSE2RobustResult& results) { //#define DO_PROFILING #ifdef DO_PROFILING CTimeLogger timlog; #endif const size_t nCorrs = in_correspondences.size(); // Default: 2 * normalizationStd ("noise level") const double MAX_RMSE_TO_END = (params.max_rmse_to_end <= 0 ? 2 * normalizationStd : params.max_rmse_to_end); MRPT_START // Asserts: if (nCorrs < params.ransac_minSetSize) { // Nothing to do! results.transformation.clear(); results.largestSubSet = TMatchingPairList(); return false; } #ifdef DO_PROFILING timlog.enter("ransac.find_max*"); #endif // Find the max. index of "this" and "other: unsigned int maxThis = 0, maxOther = 0; for (const auto& in_correspondence : in_correspondences) { maxThis = max(maxThis, in_correspondence.this_idx); maxOther = max(maxOther, in_correspondence.other_idx); } #ifdef DO_PROFILING timlog.leave("ransac.find_max*"); #endif #ifdef DO_PROFILING timlog.enter("ransac.count_unique_corrs"); #endif // Fill out 2 arrays indicating whether each element has a correspondence: std::vector<bool> hasCorrThis(maxThis + 1, false); std::vector<bool> hasCorrOther(maxOther + 1, false); unsigned int howManyDifCorrs = 0; for (const auto& in_correspondence : in_correspondences) { if (!hasCorrThis[in_correspondence.this_idx] && !hasCorrOther[in_correspondence.other_idx]) { hasCorrThis[in_correspondence.this_idx] = true; hasCorrOther[in_correspondence.other_idx] = true; howManyDifCorrs++; } } #ifdef DO_PROFILING timlog.leave("ransac.count_unique_corrs"); #endif // Clear the set of output particles: results.transformation.clear(); // If there are less different correspondences than the minimum required, // quit: if (howManyDifCorrs < params.ransac_minSetSize) { // Nothing we can do here!!! :~$ results.transformation.clear(); results.largestSubSet = TMatchingPairList(); return false; } #ifdef AVOID_MULTIPLE_CORRESPONDENCES unsigned k; // Find duplicated landmarks (from SIFT features with different // descriptors,etc...) // this is to avoid establishing multiple correspondences for the same // physical point! // ------------------------------------------------------------------------------------------------ std::vector<std::vector<int>> listDuplicatedLandmarksThis(maxThis + 1); ASSERT_(nCorrs >= 1); for (k = 0; k < nCorrs - 1; k++) { std::vector<int> duplis; for (unsigned j = k; j < nCorrs - 1; j++) { if (in_correspondences[k].this_x == in_correspondences[j].this_x && in_correspondences[k].this_y == in_correspondences[j].this_y && in_correspondences[k].this_z == in_correspondences[j].this_z) duplis.push_back(in_correspondences[j].this_idx); } listDuplicatedLandmarksThis[in_correspondences[k].this_idx] = duplis; } std::vector<std::vector<int>> listDuplicatedLandmarksOther(maxOther + 1); for (k = 0; k < nCorrs - 1; k++) { std::vector<int> duplis; for (unsigned j = k; j < nCorrs - 1; j++) { if (in_correspondences[k].other_x == in_correspondences[j].other_x && in_correspondences[k].other_y == in_correspondences[j].other_y && in_correspondences[k].other_z == in_correspondences[j].other_z) duplis.push_back(in_correspondences[j].other_idx); } listDuplicatedLandmarksOther[in_correspondences[k].other_idx] = duplis; } #endif std::deque<TMatchingPairList> alreadyAddedSubSets; CPosePDFGaussian referenceEstimation; CPoint2DPDFGaussian pt_this; const double ransac_consistency_test_chi2_quantile = 0.99; const double chi2_thres_dim1 = mrpt::math::chi2inv(ransac_consistency_test_chi2_quantile, 1); // ------------------------- // The RANSAC loop // ------------------------- size_t largest_consensus_yet = 0; // Used for dynamic # of steps double largestSubSet_RMSE = std::numeric_limits<double>::max(); results.ransac_iters = params.ransac_nSimulations; const bool use_dynamic_iter_number = results.ransac_iters == 0; if (use_dynamic_iter_number) { ASSERT_( params.probability_find_good_model > 0 && params.probability_find_good_model < 1); // Set an initial # of iterations: results.ransac_iters = 10; // It doesn't matter actually, since will be // changed in the first loop } std::vector<bool> alreadySelectedThis, alreadySelectedOther; if (!params.ransac_algorithmForLandmarks) { alreadySelectedThis.assign(maxThis + 1, false); alreadySelectedOther.assign(maxOther + 1, false); } // else -> It will be done anyway inside the for() below // First: Build a permutation of the correspondences to pick from it // sequentially: std::vector<size_t> corrsIdxs(nCorrs), corrsIdxsPermutation; for (size_t i = 0; i < nCorrs; i++) corrsIdxs[i] = i; size_t iter_idx; for (iter_idx = 0; iter_idx < results.ransac_iters; iter_idx++) // results.ransac_iters can be dynamic { #ifdef DO_PROFILING CTimeLoggerEntry tle(timlog, "ransac.iter"); #endif #ifdef DO_PROFILING timlog.enter("ransac.permute"); #endif getRandomGenerator().permuteVector(corrsIdxs, corrsIdxsPermutation); #ifdef DO_PROFILING timlog.leave("ransac.permute"); #endif TMatchingPairList subSet; // Select a subset of correspondences at random: if (params.ransac_algorithmForLandmarks) { #ifdef DO_PROFILING timlog.enter("ransac.reset_selection_marks"); #endif alreadySelectedThis.assign(maxThis + 1, false); alreadySelectedOther.assign(maxOther + 1, false); #ifdef DO_PROFILING timlog.leave("ransac.reset_selection_marks"); #endif } else { // For points: Do not repeat the corrs, and take the number of corrs // as weights } // Try to build a subsetof "ransac_maxSetSize" (maximum) elements that achieve // consensus: // ------------------------------------------------------------------------------------------ #ifdef DO_PROFILING timlog.enter("ransac.inner_loops"); #endif for (unsigned int j = 0; j < nCorrs && subSet.size() < params.ransac_maxSetSize; j++) { const size_t idx = corrsIdxsPermutation[j]; const TMatchingPair& corr_j = in_correspondences[idx]; // Don't pick the same features twice! if (alreadySelectedThis[corr_j.this_idx] || alreadySelectedOther[corr_j.other_idx]) continue; // Additional user-provided filter: if (params.user_individual_compat_callback) { mrpt::tfest::TPotentialMatch pm; pm.idx_this = corr_j.this_idx; pm.idx_other = corr_j.other_idx; if (!params.user_individual_compat_callback(pm)) continue; // Skip this one! } if (subSet.size() < 2) { // ------------------------------------------------------------------------------------------------------ // If we are within the first two correspondences, just add them // to the subset: // ------------------------------------------------------------------------------------------------------ subSet.push_back(corr_j); markAsPicked(corr_j, alreadySelectedThis, alreadySelectedOther); if (subSet.size() == 2) { // Consistency Test: From // Check the feasibility of this pair "idx1"-"idx2": // The distance between the pair of points in MAP1 must be // very close // to that of their correspondences in MAP2: const double corrs_dist1 = mrpt::math::distanceBetweenPoints( subSet[0].this_x, subSet[0].this_y, subSet[1].this_x, subSet[1].this_y); const double corrs_dist2 = mrpt::math::distanceBetweenPoints( subSet[0].other_x, subSet[0].other_y, subSet[1].other_x, subSet[1].other_y); // Is is a consistent possibility? // We use a chi2 test (see paper for the derivation) const double corrs_dist_chi2 = square(square(corrs_dist1) - square(corrs_dist2)) / (8.0 * square(normalizationStd) * (square(corrs_dist1) + square(corrs_dist2))); bool is_acceptable = (corrs_dist_chi2 < chi2_thres_dim1); if (is_acceptable) { // Perform estimation: tfest::se2_l2(subSet, referenceEstimation); // Normalized covariance: scale! referenceEstimation.cov *= square(normalizationStd); // Additional filter: // If the correspondences as such the transformation // has a high ambiguity, we discard it! is_acceptable = (referenceEstimation.cov(2, 2) < square(DEG2RAD(5.0f))); } if (!is_acceptable) { // Remove this correspondence & try again with a // different pair: subSet.erase(subSet.begin() + (subSet.size() - 1)); } else { // Only mark as picked if we're really keeping it: markAsPicked( corr_j, alreadySelectedThis, alreadySelectedOther); } } } else { #ifdef DO_PROFILING timlog.enter("ransac.test_consistency"); #endif // ------------------------------------------------------------------------------------------------------ // The normal case: // - test for "consensus" with the current group: // - If it is compatible (ransac_maxErrorXY, // ransac_maxErrorPHI), grow the "consensus set" // - If not, do not add it. // ------------------------------------------------------------------------------------------------------ // Test for the mahalanobis distance between: // "referenceEstimation (+) point_other" AND "point_this" referenceEstimation.composePoint( mrpt::math::TPoint2D(corr_j.other_x, corr_j.other_y), pt_this); const double maha_dist = pt_this.mahalanobisDistanceToPoint( corr_j.this_x, corr_j.this_y); const bool passTest = maha_dist < params.ransac_mahalanobisDistanceThreshold; if (passTest) { // OK, consensus passed: subSet.push_back(corr_j); markAsPicked( corr_j, alreadySelectedThis, alreadySelectedOther); } // else -> Test failed #ifdef DO_PROFILING timlog.leave("ransac.test_consistency"); #endif } // end else "normal case" } // end for j #ifdef DO_PROFILING timlog.leave("ransac.inner_loops"); #endif const bool has_to_eval_RMSE = (subSet.size() >= params.ransac_minSetSize); // Compute the RMSE of this matching and the corresponding // transformation (only if we'll use this value below) double this_subset_RMSE = 0; if (has_to_eval_RMSE) { #ifdef DO_PROFILING CTimeLoggerEntry tle(timlog, "ransac.comp_rmse"); #endif // Recompute referenceEstimation from all the corrs: tfest::se2_l2(subSet, referenceEstimation); // Normalized covariance: scale! referenceEstimation.cov *= square(normalizationStd); for (size_t k = 0; k < subSet.size(); k++) { double gx, gy; referenceEstimation.mean.composePoint( subSet[k].other_x, subSet[k].other_y, gx, gy); this_subset_RMSE += mrpt::math::distanceSqrBetweenPoints<double>( subSet[k].this_x, subSet[k].this_y, gx, gy); } this_subset_RMSE /= std::max(static_cast<size_t>(1), subSet.size()); } else { this_subset_RMSE = std::numeric_limits<double>::max(); } // Save the estimation result as a "particle", only if the subSet // contains // "ransac_minSetSize" elements at least: if (subSet.size() >= params.ransac_minSetSize) { // If this subset was previously added to the SOG, just increment // its weight // and do not add a new mode: int indexFound = -1; // JLBC Added DEC-2007: An alternative (optional) method to fuse // Gaussian modes: if (!params.ransac_fuseByCorrsMatch) { // Find matching by approximate match in the X,Y,PHI means // ------------------------------------------------------------------- for (size_t i = 0; i < results.transformation.size(); i++) { double diffXY = results.transformation.get(i).mean.distanceTo( referenceEstimation.mean); double diffPhi = fabs(math::wrapToPi( results.transformation.get(i).mean.phi() - referenceEstimation.mean.phi())); if (diffXY < params.ransac_fuseMaxDiffXY && diffPhi < params.ransac_fuseMaxDiffPhi) { // printf("Match by distance found: distXY:%f distPhi=%f // deg\n",diffXY,RAD2DEG(diffPhi)); indexFound = i; break; } } } else { // Find matching mode by exact match in the list of // correspondences: // ------------------------------------------------------------------- // Sort "subSet" in order to compare them easily! // std::sort( subSet.begin(), subSet.end() ); // Try to find matching corrs: for (size_t i = 0; i < alreadyAddedSubSets.size(); i++) { if (subSet == alreadyAddedSubSets[i]) { indexFound = i; break; } } } if (indexFound != -1) { // This is an already added mode: if (params.ransac_algorithmForLandmarks) results.transformation.get(indexFound).log_w = log( 1 + exp(results.transformation.get(indexFound).log_w)); else results.transformation.get(indexFound).log_w = log(subSet.size() + exp(results.transformation.get(indexFound).log_w)); } else { // Add a new mode to the SOG: alreadyAddedSubSets.push_back(subSet); CPosePDFSOG::TGaussianMode newSOGMode; if (params.ransac_algorithmForLandmarks) newSOGMode.log_w = 0; // log(1); else newSOGMode.log_w = log(static_cast<double>(subSet.size())); newSOGMode.mean = referenceEstimation.mean; newSOGMode.cov = referenceEstimation.cov; // Add a new mode to the SOG! results.transformation.push_back(newSOGMode); } } // end if subSet.size()>=ransac_minSetSize const size_t ninliers = subSet.size(); if (largest_consensus_yet < ninliers) { largest_consensus_yet = ninliers; // Dynamic # of steps: if (use_dynamic_iter_number) { // Update estimate of nCorrs, the number of trials to ensure we // pick, // with probability p, a data set with no outliers. const double fracinliers = ninliers / static_cast<double>(howManyDifCorrs); // corrsIdxs.size()); double pNoOutliers = 1 - pow(fracinliers, static_cast<double>( 2.0 /*minimumSizeSamplesToFit*/)); pNoOutliers = std::max( std::numeric_limits<double>::epsilon(), pNoOutliers); // Avoid division by -Inf pNoOutliers = std::min( 1.0 - std::numeric_limits<double>::epsilon(), pNoOutliers); // Avoid division by 0. // Number of results.ransac_iters = log(1 - params.probability_find_good_model) / log(pNoOutliers); results.ransac_iters = std::max( results.ransac_iters, params.ransac_min_nSimulations); if (params.verbose) cout << "[tfest::RANSAC] Iter #" << iter_idx << ":est. # iters=" << results.ransac_iters << " pNoOutliers=" << pNoOutliers << " #inliers: " << ninliers << endl; } } // Save the largest subset: if (subSet.size() >= params.ransac_minSetSize && this_subset_RMSE < largestSubSet_RMSE) { if (params.verbose) cout << "[tfest::RANSAC] Iter #" << iter_idx << " Better subset: " << subSet.size() << " inliers, RMSE=" << this_subset_RMSE << endl; results.largestSubSet = subSet; largestSubSet_RMSE = this_subset_RMSE; } // Is the found subset good enough? if (subSet.size() >= params.ransac_minSetSize && this_subset_RMSE < MAX_RMSE_TO_END) { break; // end RANSAC iterations. } #ifdef DO_PROFILING timlog.leave("ransac.iter"); #endif } // end for each iteration if (params.verbose) cout << "[tfest::RANSAC] Finished after " << iter_idx << " iterations.\n"; // Set the weights of the particles to sum the unity: results.transformation.normalizeWeights(); // Done! MRPT_END_WITH_CLEAN_UP( printf("nCorrs=%u\n", static_cast<unsigned int>(nCorrs)); printf("Saving '_debug_in_correspondences.txt'..."); in_correspondences.dumpToFile("_debug_in_correspondences.txt"); printf("Ok\n"); printf("Saving '_debug_results.transformation.txt'..."); results.transformation.saveToTextFile( "_debug_results.transformation.txt"); printf("Ok\n"););
/*--------------------------------------------------------------- leastSquareErrorRigidTransformation Compute the best transformation (x,y,phi) given a set of correspondences between 2D points in two different maps. This method is intensively used within ICP. ---------------------------------------------------------------*/ bool tfest::se2_l2( const TMatchingPairList& in_correspondences, TPose2D& out_transformation, CMatrixDouble33* out_estimateCovariance) { MRPT_START const size_t N = in_correspondences.size(); if (N < 2) return false; const float N_inv = 1.0f / N; // For efficiency, keep this value. // ---------------------------------------------------------------------- // Compute the estimated pose. Notation from the paper: // "Mobile robot motion estimation by 2d scan matching with genetic and // iterative // closest point algorithms", J.L. Martinez Rodriguez, A.J. Gonzalez, J. Morales // Rodriguez, A. Mandow Andaluz, A. J. Garcia Cerezo, // Journal of Field Robotics, 2006. // ---------------------------------------------------------------------- // ---------------------------------------------------------------------- // For the formulas of the covariance, see: // http://www.mrpt.org/Paper:Occupancy_Grid_Matching // and Jose Luis Blanco's PhD thesis. // ---------------------------------------------------------------------- #if MRPT_HAS_SSE2 // SSE vectorized version: //{ // TMatchingPair dumm; // MRPT_COMPILE_TIME_ASSERT(sizeof(dumm.this_x)==sizeof(float)) // MRPT_COMPILE_TIME_ASSERT(sizeof(dumm.other_x)==sizeof(float)) //} __m128 sum_a_xyz = _mm_setzero_ps(); // All 4 zeros (0.0f) __m128 sum_b_xyz = _mm_setzero_ps(); // All 4 zeros (0.0f) // [ f0 f1 f2 f3 ] // xa*xb ya*yb xa*yb xb*ya __m128 sum_ab_xyz = _mm_setzero_ps(); // All 4 zeros (0.0f) for (TMatchingPairList::const_iterator corrIt = in_correspondences.begin(); corrIt != in_correspondences.end(); corrIt++) { // Get the pair of points in the correspondence: // a_xyyx = [ xa ay | xa ya ] // b_xyyx = [ xb yb | yb xb ] // (product) // [ xa*xb ya*yb xa*yb xb*ya // LO0 LO1 HI2 HI3 // Note: _MM_SHUFFLE(hi3,hi2,lo1,lo0) const __m128 a_xyz = _mm_loadu_ps(&corrIt->this_x); // *Unaligned* load const __m128 b_xyz = _mm_loadu_ps(&corrIt->other_x); // *Unaligned* load const __m128 a_xyxy = _mm_shuffle_ps(a_xyz, a_xyz, _MM_SHUFFLE(1, 0, 1, 0)); const __m128 b_xyyx = _mm_shuffle_ps(b_xyz, b_xyz, _MM_SHUFFLE(0, 1, 1, 0)); // Compute the terms: sum_a_xyz = _mm_add_ps(sum_a_xyz, a_xyz); sum_b_xyz = _mm_add_ps(sum_b_xyz, b_xyz); // [ f0 f1 f2 f3 ] // xa*xb ya*yb xa*yb xb*ya sum_ab_xyz = _mm_add_ps(sum_ab_xyz, _mm_mul_ps(a_xyxy, b_xyyx)); } alignas(MRPT_MAX_ALIGN_BYTES) float sums_a[4], sums_b[4]; _mm_store_ps(sums_a, sum_a_xyz); _mm_store_ps(sums_b, sum_b_xyz); const float& SumXa = sums_a[0]; const float& SumYa = sums_a[1]; const float& SumXb = sums_b[0]; const float& SumYb = sums_b[1]; // Compute all four means: const __m128 Ninv_4val = _mm_set1_ps(N_inv); // load 4 copies of the same value sum_a_xyz = _mm_mul_ps(sum_a_xyz, Ninv_4val); sum_b_xyz = _mm_mul_ps(sum_b_xyz, Ninv_4val); // means_a[0]: mean_x_a // means_a[1]: mean_y_a // means_b[0]: mean_x_b // means_b[1]: mean_y_b alignas(MRPT_MAX_ALIGN_BYTES) float means_a[4], means_b[4]; _mm_store_ps(means_a, sum_a_xyz); _mm_store_ps(means_b, sum_b_xyz); const float& mean_x_a = means_a[0]; const float& mean_y_a = means_a[1]; const float& mean_x_b = means_b[0]; const float& mean_y_b = means_b[1]; // Sxx Syy Sxy Syx // xa*xb ya*yb xa*yb xb*ya alignas(MRPT_MAX_ALIGN_BYTES) float cross_sums[4]; _mm_store_ps(cross_sums, sum_ab_xyz); const float& Sxx = cross_sums[0]; const float& Syy = cross_sums[1]; const float& Sxy = cross_sums[2]; const float& Syx = cross_sums[3]; // Auxiliary variables Ax,Ay: const float Ax = N * (Sxx + Syy) - SumXa * SumXb - SumYa * SumYb; const float Ay = SumXa * SumYb + N * (Syx - Sxy) - SumXb * SumYa; #else // Non vectorized version: float SumXa = 0, SumXb = 0, SumYa = 0, SumYb = 0; float Sxx = 0, Sxy = 0, Syx = 0, Syy = 0; for (TMatchingPairList::const_iterator corrIt = in_correspondences.begin(); corrIt != in_correspondences.end(); corrIt++) { // Get the pair of points in the correspondence: const float xa = corrIt->this_x; const float ya = corrIt->this_y; const float xb = corrIt->other_x; const float yb = corrIt->other_y; // Compute the terms: SumXa += xa; SumYa += ya; SumXb += xb; SumYb += yb; Sxx += xa * xb; Sxy += xa * yb; Syx += ya * xb; Syy += ya * yb; } // End of "for all correspondences"... const float mean_x_a = SumXa * N_inv; const float mean_y_a = SumYa * N_inv; const float mean_x_b = SumXb * N_inv; const float mean_y_b = SumYb * N_inv; // Auxiliary variables Ax,Ay: const float Ax = N * (Sxx + Syy) - SumXa * SumXb - SumYa * SumYb; const float Ay = SumXa * SumYb + N * (Syx - Sxy) - SumXb * SumYa; #endif out_transformation.phi = (Ax != 0 || Ay != 0) ? atan2(static_cast<double>(Ay), static_cast<double>(Ax)) : 0.0; const double ccos = cos(out_transformation.phi); const double csin = sin(out_transformation.phi); out_transformation.x = mean_x_a - mean_x_b * ccos + mean_y_b * csin; out_transformation.y = mean_y_a - mean_x_b * csin - mean_y_b * ccos; if (out_estimateCovariance) { CMatrixDouble33* C = out_estimateCovariance; // less typing! // Compute the normalized covariance matrix: // ------------------------------------------- double var_x_a = 0, var_y_a = 0, var_x_b = 0, var_y_b = 0; const double N_1_inv = 1.0 / (N - 1); // 0) Precompute the unbiased variances estimations: // ---------------------------------------------------- for (TMatchingPairList::const_iterator corrIt = in_correspondences.begin(); corrIt != in_correspondences.end(); corrIt++) { var_x_a += square(corrIt->this_x - mean_x_a); var_y_a += square(corrIt->this_y - mean_y_a); var_x_b += square(corrIt->other_x - mean_x_b); var_y_b += square(corrIt->other_y - mean_y_b); } var_x_a *= N_1_inv; // /= (N-1) var_y_a *= N_1_inv; var_x_b *= N_1_inv; var_y_b *= N_1_inv; // 1) Compute BETA = s_Delta^2 / s_p^2 // -------------------------------- const double BETA = (var_x_a + var_y_a + var_x_b + var_y_b) * pow(static_cast<double>(N), 2.0) * static_cast<double>(N - 1); // 2) And the final covariance matrix: // (remember: this matrix has yet to be // multiplied by var_p to be the actual covariance!) // ------------------------------------------------------- const double D = square(Ax) + square(Ay); C->get_unsafe(0, 0) = 2.0 * N_inv + BETA * square((mean_x_b * Ay + mean_y_b * Ax) / D); C->get_unsafe(1, 1) = 2.0 * N_inv + BETA * square((mean_x_b * Ax - mean_y_b * Ay) / D); C->get_unsafe(2, 2) = BETA / D; C->get_unsafe(0, 1) = C->get_unsafe(1, 0) = -BETA * (mean_x_b * Ay + mean_y_b * Ax) * (mean_x_b * Ax - mean_y_b * Ay) / square(D); C->get_unsafe(0, 2) = C->get_unsafe(2, 0) = BETA * (mean_x_b * Ay + mean_y_b * Ax) / pow(D, 1.5); C->get_unsafe(1, 2) = C->get_unsafe(2, 1) = BETA * (mean_y_b * Ay - mean_x_b * Ax) / pow(D, 1.5); } return true; MRPT_END }