TProfile* overlayTProfiles(TH2F* hdata, TH2F* hdy, float ymin, float ymax, TString savename) { // See how the mean of the dimumass changes vs some variable by making TProfiles of a 2D histogram with the Dimu mass as the y axis. // Compare data to MC and save the results as png files. TString dataname = TString("Golden_JSON_DoubleMuon_Data"); TString dyname = TString("Drell_Yan_Monte_Carlo_2015"); // Make TProfiles from them to see how the mean changes vs the x variable. TProfile* pdata = hdata->ProfileX(); pdata->SetLineColor(1); pdata->SetLineWidth(3); pdata->SetTitle(hdata->GetTitle()); pdata->GetYaxis()->SetTitle(hdata->GetYaxis()->GetTitle()); TProfile* pdy = hdy->ProfileX(); pdy->SetLineColor(2); pdy->SetLineWidth(3); pdy->SetTitle(hdy->GetTitle()); pdy->GetYaxis()->SetTitle(hdy->GetYaxis()->GetTitle()); std::cout<< "hdata: " << hdata << std::endl; std::cout<< "hdy: " << hdy << std::endl; std::cout<< "pdata: " << pdata << std::endl; std::cout<< "pdy: " << pdy << std::endl; TCanvas* c = new TCanvas(); c->SetGridx(kTRUE); c->SetGridy(kTRUE); // Draw data and MC on the same plot // Have to draw the same plots twice to get error bars and a curve through the error bars. c->cd(); // hdata->Draw("colz"); pdata->SetAxisRange(ymin,ymax,"Y"); pdata->Draw("hist c"); pdata->Draw("E X0 same"); pdy->Draw("hist c same"); pdy->Draw("E X0 same"); // Stat box alignment DiMuPlottingSystem* dps = new DiMuPlottingSystem(); dps->arrangeStatBox(c); // Legend TLegend* l = new TLegend(0.15, 0.15, 0.7, 0.25, "", "brNDC"); l->AddEntry(pdata, dataname, "l"); l->AddEntry(pdy, dyname, "l"); l->Draw("same"); c->Print(savename); return pdata; }
// Draw a 2-D plot within the specified Y range and superimpose its X profile, // setting as sigmas that of the fit (and not the error of the mean) void plotAndProfileXSpread (TH2* h2, float min, float max, bool profile=false, float ymin=-5., float ymax=5.) { setStyle(h2); gPad->SetGrid(1,1); gStyle->SetGridColor(15); gStyle->SetOptStat(0); // h2->RebinX(3); // h2->RebinY(2); // h2->SetXTitle("distance from anode (cm)"); // h2->SetYTitle("(d_{reco}-d_{sim})/#sigma_{reco}"); h2->SetMarkerColor(2); h2->SetLineColor(2); h2->GetYaxis()->SetTitleOffset(1.4); h2->GetXaxis()->SetRangeUser(min,max); h2->GetYaxis()->SetRangeUser(ymin,ymax); h2->DrawCopy("box"); if (profile) { TProfile* prof = h2->ProfileX("profile",-1,-1,"s"); prof->SetMarkerStyle(20); prof->SetMarkerSize(1.2); prof->SetMarkerColor(1); prof->SetLineColor(1); prof->SetLineWidth(2); prof->DrawCopy("same e1"); delete prof; } TLine * l = new TLine(h2->GetXaxis()->GetXmin(),0,h2->GetXaxis()->GetXmax(),0); l->SetLineColor(3); l->Draw(); }
void QAoccupancy(const Char_t *fdata, const Char_t *fmc) { style(); TFile *fdtin = TFile::Open(fdata); TList *ldtin = (TList *)fdtin->Get("clist"); TH2 *hdtin = (TH2 *)ldtin->FindObject("NClustersSPD2"); TProfile *pdtin = hdtin->ProfileY("pdtin_clusters"); pdtin->SetMarkerStyle(20); pdtin->SetMarkerSize(2); pdtin->SetMarkerColor(kAzure-3); TFile *fmcin = TFile::Open(fmc); TList *lmcin = (TList *)fmcin->Get("clist"); TH2 *hmcin = (TH2 *)lmcin->FindObject("NClustersSPD2"); TProfile *pmcin = hmcin->ProfileY("pmcin_clusters"); pmcin->SetMarkerStyle(25); pmcin->SetMarkerSize(2); pmcin->SetMarkerColor(kRed+1); TCanvas *c = new TCanvas("cOccupancy", "cOccupancy", 800, 800); c->SetLogy(); TH1 * hfr = c->DrawFrame(-0.5, 2., 10.5, 500.); DrawBinLabelsX(hfr, kTRUE); hfr->SetTitle(";;#LT#it{N}_{clusters,SPD-1}#GT"); pdtin->DrawCopy("same"); pmcin->DrawCopy("same"); TLegend *legend = new TLegend(0.20, 0.18, 0.50, 0.30); legend->SetFillColor(0); legend->SetBorderSize(0); legend->SetTextFont(42); legend->SetTextSize(0.04); legend->AddEntry(pdtin, "data", "pl"); legend->AddEntry(pmcin, "Monte Carlo", "pl"); legend->Draw("same"); c->SaveAs(canvasPrefix+"occupancy.pdf"); return; TCanvas *cr = new TCanvas("cOccupancyr", "cOccupancyr", 800, 800); // hfr = cr->DrawFrame(-0.5, 0.75, 10.5, 1.25); // DrawBinLabelsX(hfr, kTRUE); // hfr->SetTitle(";;#LT#it{N}_{clusters,SPD-1}#GT ratio"); pdtin->SetLineColor(kAzure-3); pdtin->SetLineWidth(3); pdtin->Divide(pmcin); pdtin->Draw("same,histo"); legend = new TLegend(0.505025, 0.760673, 0.805276, 0.930142); legend->SetFillColor(0); legend->SetBorderSize(0); legend->SetTextFont(42); legend->SetTextSize(0.04); legend->AddEntry(pdtin, "data / Monte Carlo", "l"); legend->Draw("same"); cr->SaveAs(canvasPrefix+"occupancyr.pdf"); }
TProfile* plotIsoPerformance( TFile* ftt, const char* signal, // histogram name const char* background, // histogram name const char* name, // unique name bool reverse = false, // normally signal near zero bin, reverse means signal is around max bin double bkg_eff_min = 0, double bkg_eff_max = 1, double sig_eff_min = 0, double sig_eff_max = 0 ) { TH1F* S = dynamic_cast<TH1F*>(ftt->Get(signal)); if ( ! S ) { std::cout << "Error: histogram not found " << signal << std::endl; return 0; } TH1F* B = dynamic_cast<TH1F*>(ftt->Get(background)); if ( ! B ) { std::cout << "Error: histogram not found " << background << std::endl; return 0; } char buf[1024]; sprintf(buf,"c_%s",name); // TCanvas* c = new TCanvas(buf,buf,500,500); sprintf(buf,"p_%s",name); TProfile* p = new TProfile(buf,buf,50,bkg_eff_min,bkg_eff_max,sig_eff_min,sig_eff_max); p->SetLineColor(kBlue); p->SetLineWidth(2); p->SetMarkerStyle(20); p->SetMarkerSize(1); p->GetXaxis()->SetTitle("Background Efficiency"); p->GetYaxis()->SetTitle("Signal Efficiency"); p->SetStats(kFALSE); for( int i=0;i<=S->GetNbinsX()+1; ++i ) if ( reverse ) p->Fill(B->Integral(i,B->GetNbinsX()+1)/B->Integral(0,B->GetNbinsX()+1), S->Integral(i,S->GetNbinsX()+1)/S->Integral(0,S->GetNbinsX()+1)); else p->Fill(B->Integral(0,i)/B->Integral(0,B->GetNbinsX()+1), S->Integral(0,i)/S->Integral(0,S->GetNbinsX()+1)); // p->Draw(); return p; }