コード例 #1
0
ファイル: ErrorIntegral.C プロジェクト: Y--/root
//____________________________________________________________________
void ErrorIntegral() {
   fitFunc = new TF1("f",f,0,1,NPAR);
   TH1D * h1     = new TH1D("h1","h1",50,0,1);

   double  par[NPAR] = { 3.14, 1.};
   fitFunc->SetParameters(par);

   h1->FillRandom("f",1000); // fill histogram sampling fitFunc
   fitFunc->SetParameter(0,3.);  // vary a little the parameters
   h1->Fit(fitFunc);             // fit the histogram

   h1->Draw();

   /* calculate the integral*/
   double integral = fitFunc->Integral(0,1);

   TVirtualFitter * fitter = TVirtualFitter::GetFitter();
   assert(fitter != 0);
   double * covMatrix = fitter->GetCovarianceMatrix();

   /* using new function in TF1 (from 12/6/2007)*/
   double sigma_integral = fitFunc->IntegralError(0,1);

   std::cout << "Integral = " << integral << " +/- " << sigma_integral
             << std::endl;

   // estimated integral  and error analytically

   double * p = fitFunc->GetParameters();
   double ic  = p[1]* (1-std::cos(p[0]) )/p[0];
   double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0];
   double c1c = (1-std::cos(p[0]) )/p[0];

   // estimated error with correlations
   double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3]
      + 2.* c0c*c1c * covMatrix[1]);

   if ( std::fabs(sigma_integral-sic) > 1.E-6*sic )
      std::cout << " ERROR: test failed : different analytical  integral : "
                << ic << " +/- " << sic << std::endl;
}
コード例 #2
0
ファイル: ErrorIntegral.C プロジェクト: My-Source/root
//____________________________________________________________________
void ErrorIntegral() { 
   fitFunc = new TF1("f",f,0,1,NPAR); 
   TH1D * h1     = new TH1D("h1","h1",50,0,1); 

   double  par[NPAR] = { 3.14, 1.}; 
   fitFunc->SetParameters(par);

   h1->FillRandom("f",1000); // fill histogram sampling fitFunc
   fitFunc->SetParameter(0,3.);  // vary a little the parameters
   h1->Fit(fitFunc);             // fit the histogram 

   h1->Draw();

   // calculate the integral 
   double integral = fitFunc->Integral(0,1);

   TVirtualFitter * fitter = TVirtualFitter::GetFitter();
   assert(fitter != 0);
   double * covMatrix = fitter->GetCovarianceMatrix(); 

#ifdef HAVE_OLD_ROOT_VERSION

   // calculate now the error (needs the derivatives of the function 
   // w..r.t the parameters)
   TF1 * deriv_par0 = new TF1("dfdp0",df_dPar,0,1,1);
   deriv_par0->SetParameter(0,0);

   TF1 * deriv_par1 = new TF1("dfdp1",df_dPar,0,1,1);
   deriv_par1->SetParameter(0,1.);

   double c[2]; 

   c[0] = deriv_par0->Integral(0,1); 
   c[1] = deriv_par1->Integral(0,1); 

   double * epar = fitFunc->GetParErrors();

   // without correlations
   double sigma_integral_0 = IntegralError(2,c,epar);



   // with correlations
   double sigma_integral = IntegralError(2,c,epar,covMatrix);

#else 
   
   // using new function in TF1 (from 12/6/2007) 
   double sigma_integral = fitFunc->IntegralError(0,1);

#endif

   std::cout << "Integral = " << integral << " +/- " << sigma_integral 
             << std::endl;

   // estimated integral  and error analytically

   double * p = fitFunc->GetParameters();
   double ic  = p[1]* (1-std::cos(p[0]) )/p[0];
   double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0];
   double c1c = (1-std::cos(p[0]) )/p[0];

   // estimated error with correlations
   double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3] 
      + 2.* c0c*c1c * covMatrix[1]); 

   if ( std::fabs(sigma_integral-sic) > 1.E-6*sic ) 
      std::cout << " ERROR: test failed : different analytical  integral : " 
                << ic << " +/- " << sic << std::endl;
}
コード例 #3
0
ファイル: FitDijetMass_Data.C プロジェクト: kalanand/UserCode
void FitDijetMass_Data() {

  
  TFile *inf  = new TFile("MassResults_ak7calo.root");
  TH1F *hCorMassDen     = (TH1F*) inf->Get("DiJetMass");
  hCorMassDen->SetXTitle("Corrected Dijet Mass (GeV)");
  hCorMassDen->SetYTitle("Events/GeV");
  hCorMassDen->GetYaxis()->SetTitleOffset(1.5);
  hCorMassDen->SetMarkerStyle(20);
  hCorMassDen->GetXaxis()->SetRangeUser(120.,900.);



  gROOT->ProcessLine(".L tdrstyle.C");
  setTDRStyle();
  tdrStyle->SetErrorX(0.5);
  tdrStyle->SetPadRightMargin(0.08);
  tdrStyle->SetLegendBorderSize(0);
  gStyle->SetOptFit(1111);
  tdrStyle->SetOptStat(0); 

  
  TCanvas* c2 = new TCanvas("c2","DijetMass", 500, 500);
  /////// perform 4 parameters fit
  TF1 *func = new TF1("func", "[0]*((1-x/7000.+[3]*(x/7000)^2)^[1])/(x^[2])", 
  100., 1000.);
  func->SetParameter(0, 1.0e+08);
  func->SetParameter(1, -1.23);
  func->SetParameter(2, 4.13);
  func->SetParameter(3, 1.0);

  func->SetLineColor(4);
  func->SetLineWidth(3);

  TVirtualFitter::SetMaxIterations( 10000 );
  TVirtualFitter *fitter;
  TMatrixDSym* cov_matrix;

  int fitStatus = hCorMassDen->Fit("func","LLI","",130.0, 800.0); // QCD fit
 
  TH1F *hFitUncertainty = hCorMassDen->Clone("hFitUncertainty");
  hFitUncertainty->SetLineColor(5);
  hFitUncertainty->SetFillColor(5);
  hFitUncertainty->SetMarkerColor(5);

  if (fitStatus == 0) {
    fitter = TVirtualFitter::GetFitter();
    double* m_elements = fitter->GetCovarianceMatrix();
    cov_matrix = new TMatrixDSym( func->GetNumberFreeParameters(),m_elements);
    cov_matrix->Print();
    double x, y, e;

    for(int i=0;i<hFitUncertainty->GetNbinsX();i++)
      {
	x = hFitUncertainty->GetBinCenter(i+1);
	y = func->Eval(x);
	e = QCDFitUncertainty( func, *cov_matrix, x);
	hFitUncertainty->SetBinContent(i+1,y);
	hFitUncertainty->SetBinError(i+1,e);
      }
  }

  hCorMassDen->Draw("ep");
  gPad->Update();
  TPaveStats *st = (TPaveStats*)hCorMassDen->FindObject("stats");
  st->SetName("stats1");
  st->SetX1NDC(0.3); //new x start position
  st->SetX2NDC(0.6); //new x end position
  st->SetTextColor(4);
  hCorMassDen->GetListOfFunctions()->Add(st);



  /////// perform 2 parameters fit
  TF1 *func2 = new TF1("func2", "[0]*(1-x/7000.)/(x^[1])", 100., 1000.);
  func2->SetParameter(0, 10000.);
  func2->SetParameter(1, 5.0);
  func2->SetLineWidth(3);

  fitStatus = hCorMassDen->Fit("func2","LLI","",130.0, 800.0); // QCD fit

  TH1F *hFitUncertainty2 = hCorMassDen->Clone("hFitUncertainty2");
  hFitUncertainty2->SetLineColor(kGray);
  hFitUncertainty2->SetFillColor(kGray);
  hFitUncertainty2->SetMarkerColor(kGray);

  if (fitStatus == 0) {
    fitter = TVirtualFitter::GetFitter();
    double* m_elements = fitter->GetCovarianceMatrix();
    cov_matrix = new TMatrixDSym( func2->GetNumberFreeParameters(),m_elements);
    cov_matrix->Print();
    double x, y, e;

    for(int i=0;i<hFitUncertainty2->GetNbinsX();i++)
      {
	x = hFitUncertainty2->GetBinCenter(i+1);
	y = func2->Eval(x);
	e = QCDFitUncertainty( func2, *cov_matrix, x);
	hFitUncertainty2->SetBinContent(i+1,y);
	hFitUncertainty2->SetBinError(i+1,e);
      }
  }

  hFitUncertainty->Draw("E3 same");
  hCorMassDen->Draw("ep sames");
  hFitUncertainty2->Draw("E3 same");
  hCorMassDen->Draw("ep sames");
  func2->Draw("same");
  c2->SetLogy(1);



/*
  

  TH1F *hCorMass     = hCorMassDen->Clone("hCorMass");


  for(int i=0; i<hCorMass->GetNbinsX(); i++){
    hCorMass->SetBinContent(i+1, hCorMassDen->GetBinContent(i+1) * hCorMassDen->GetBinWidth(i+1));
    hCorMass->SetBinError(i+1, hCorMassDen->GetBinError(i+1) * hCorMassDen->GetBinWidth(i+1));
  } 




  // Our observable is the invariant mass
  RooRealVar invMass("invMass", "Corrected dijet mass", 
		     100., 1000.0, "GeV");
  RooDataHist data( "data", "", invMass, hCorMass);

   //////////////////////////////////////////////




   // make QCD model
  RooRealVar p0("p0", "# events", 600.0, 0.0, 10000000000.);
  RooRealVar p1("p1","p1", 3.975, -10., 10.) ;  
  RooRealVar p2("p2","p2", 5.302, 4., 8.) ; 
  RooRealVar p3("p3","p3", -1.51, -100., 100.) ; 



//    // define QCD line shape
  RooGenericPdf qcdModel("qcdModel", "pow(1-@0/7000.+@3*(@0/7000.)*(@0/7000.),@1)*pow(@0/7000.,-@2)",
			 RooArgList(invMass,p1,p2,p3)); 

   // full model
   RooAddPdf model("model","qcd",RooArgList(qcdModel), RooArgList(p0)); 



   //plot sig candidates, full model, and individual componenets 

   //   __ _ _    
   //  / _(_) |_  
   // | |_| | __| 
   // |  _| | |_  
   // |_| |_|\__| 


 // Important: fit integrating f(x) over ranges defined by X errors, rather
  // than taking point at center of bin

   RooFitResult* fit = model.fitTo(data, Minos(kFALSE), Extended(kTRUE),
				   SumW2Error(kFALSE),Save(kTRUE), Range(130.,800.),
				   Integrate(kTRUE) );

   // to perform chi^2 minimization fit instead
   //    RooFitResult* fit = model.chi2FitTo(data, Extended(kTRUE), 
   // 				       Save(),Range(50.,526.),Integrate(kTRUE) );

   fit->Print();


   //plot data 
   TCanvas* cdataNull = new TCanvas("cdataNull","fit to dijet mass",500,500);
   RooPlot* frame1 = invMass.frame() ; 
   data.plotOn(frame1, DataError(RooAbsData::SumW2) ) ; 
   model.plotOn(frame1, LineColor(kBlue)) ; 
   model.plotOn(frame1, VisualizeError(*fit, 1),FillColor(kYellow)) ;   
   data.plotOn(frame1, DataError(RooAbsData::SumW2) ) ; 
   model.plotOn(frame1, LineColor(kBlue)) ; 
   model.paramOn(frame1, Layout(0.4, 0.85, 0.92)); 
   TPaveText* dataPave = (TPaveText*) frame1->findObject("model_paramBox");
   dataPave->SetY1(0.77);
   gPad->SetLogy();
   frame1->GetYaxis()->SetNoExponent();
   frame1->GetYaxis()->SetRangeUser(5E-2,5E+4);
   frame1->GetYaxis()->SetTitle("Events / bin");
   frame1->GetYaxis()->SetTitleOffset(1.35);
   frame1->SetTitle("fit to data with QCD lineshape");
   frame1->Draw() ;


    
    // S h o w   r e s i d u a l   a n d   p u l l   d i s t s
    // -------------------------------------------------------
    
   //// Construct a histogram with the residuals of the data w.r.t. the curve
   RooHist* hresid = frame1->residHist() ;
   // Create a new frame to draw the residual distribution and add the distribution to the frame
   RooPlot* frame2 = invMass.frame(Title("Residual Distribution")) ;
   frame2->addPlotable(hresid,"P") ;


    
   ///// Construct a histogram with the pulls of the data w.r.t the curve
   RooHist* hpull = frame1->pullHist() ;   
   //// Create a new frame to draw the pull distribution and add the distribution to the frame
   RooPlot* frame3 = invMass.frame(Title("Pull Distribution")) ;
   frame3->addPlotable(hpull,"P") ;


   TCanvas* cResidual = new TCanvas("cResidual","Residual Distribution",1000,500);
   cResidual->Divide(2) ;
   cResidual->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.6) ; frame2->Draw() ;
   cResidual->cd(2) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.6) ; frame3->Draw() ;
  
*/
}
コード例 #4
0
void Fit_electron_nsigma_Mean(TH1F *mh1NisgmaE_unlike[NpT_bins_run12_MB],TH1F *mh1NisgmaE_like[NpT_bins_run12_MB],TH1F *mh1NisgmaE_unlike_like[NpT_bins_run12_MB])
{
  gStyle->SetOptFit(1111);
  
  TH1F *Mean=new TH1F("Mean","",    NpT_bins_run12_MB,pt_run12_MB);
  TH1F *Mean_u=new TH1F("Mean_u","",NpT_bins_run12_MB,pt_run12_MB);
  TH1F *Mean_d=new TH1F("Mean_d","",NpT_bins_run12_MB,pt_run12_MB);
  
  TH1F *Sigma=new TH1F("Sigma","",NpT_bins_run12_MB,pt_run12_MB);
  TH1F *Sigma_u=new TH1F("Sigma_u","",NpT_bins_run12_MB,pt_run12_MB);
  TH1F *Sigma_d=new TH1F("Sigma_d","",NpT_bins_run12_MB,pt_run12_MB);
  
  
  TCanvas *c2=new TCanvas("c2","",1200,1000);
  TCanvas *c3=new TCanvas("c3","",1200,1000);

  TCanvas *c4=new TCanvas("c4","",1200,1000);
  TCanvas *c5=new TCanvas("c5","",1200,1000);

  c2->Divide(3,3,0.001,0.001);
  c3->Divide(3,3,0.001,0.001);

  c4->Divide(3,3,0.001,0.001);
  c5->Divide(3,3,0.001,0.001);

  int Npad=1;
  for(Int_t ipt=0;ipt<NpT_bins_run12_MB;ipt++)
    {
      TF1 *f1 = new TF1(TString("f1"),"gaus",-5,5);      
      if(ipt<9)
        {
          c2->cd(Npad++);
          gPad->SetLogy(1);
        }
      else if(ipt<18)
        {
          c3->cd(Npad++);
          gPad->SetLogy(1);
        }

      else if(ipt<27)
        {
          c4->cd(Npad++);
          gPad->SetLogy(1);
        }

      else if(ipt<36)
        {
          c5->cd(Npad++);
          gPad->SetLogy(1);
        }

      if(Npad==10) Npad=1;

      mh1NisgmaE_unlike_like[ipt]->SetTitle(mh1_pT_Title[ipt]);
      mh1NisgmaE_unlike_like[ipt]->GetXaxis()->SetTitle("nSigmaE");
      mh1NisgmaE_unlike_like[ipt]->GetYaxis()->SetTitle("Counts");

      mh1NisgmaE_unlike_like[ipt]->GetYaxis()->SetRangeUser(1,1.2*mh1NisgmaE_unlike[ipt]->GetMaximum());
      mh1NisgmaE_unlike_like[ipt]->GetXaxis()->SetRangeUser(-3,3);      


      mh1NisgmaE_unlike[ipt]->SetLineColor(1);
      mh1NisgmaE_like[ipt]->SetLineColor(3);
      mh1NisgmaE_unlike_like[ipt]->SetLineColor(4);


      mh1NisgmaE_unlike_like[ipt]->Fit(f1,"R","same",-3,3);
      mh1NisgmaE_unlike[ipt]->Draw("same");
      mh1NisgmaE_unlike_like[ipt]->Draw("same");
      mh1NisgmaE_like[ipt]->Draw("same");

      TLegend *legend = new TLegend(0.15,0.65,0.4,0.8);
      legend->AddEntry(mh1NisgmaE_unlike[ipt],"Unlike ","lpe");
      legend->AddEntry(mh1NisgmaE_like[ipt],"Like ","lpe");
      legend->AddEntry(mh1NisgmaE_unlike_like[ipt],"Unlike - Like ","lpe");
      legend->SetBorderSize(0);
      legend->SetFillStyle(0);
      legend->SetTextSize(0.035);
      legend->Draw("same");

      TVirtualFitter * fitter = TVirtualFitter::GetFitter();
      assert(fitter != 0);
      double * cov =fitter->GetCovarianceMatrix();
      
      cout<<cov[0]<<" "<<sqrt(cov[4])<<" "<<sqrt(cov[8])<<" "<<cov[7]<<" meanerr="<<f1->GetParError(1)<<"sigmaerr "<<f1->GetParError(2)<<endl;
      outdata << (pt_run12_MB[ipt]+pt_run12_MB[ipt+1])/2       << "  " << 0.5*(pt_run12_MB[ipt+1]-pt_run12_MB[ipt])    << "  "
	      << f1->GetParameter(1)     << "  " << cov[4]    << "  " 
	      << f1->GetParameter(2)     << "  " << cov[8]    << "  "<<cov[7]<< endl; 
      
      


    }



  c2->SaveAs("nsigmaE_c2_partner.pdf");
  c3->SaveAs("nsigmaE_c3_partner.pdf");

  c4->SaveAs("nsigmaE_c4_partner.pdf");
  c5->SaveAs("nsigmaE_c5_partner.pdf");

 
  
}
コード例 #5
0
ファイル: FitPlotAndSave.C プロジェクト: TENorbert/ECALTime
//***############## main fitting Fxn ################ *****//
void FitPlotAndSave( char *Ifile ){
 
/** Plot Options***/	
//gROOT->Reset();
// gROOT->Clear();
gROOT->SetStyle("Plain") ;
gROOT->SetBatch(kFALSE);
gStyle->SetOptTitle(1);
gStyle->SetOptStat(0);
gStyle->SetOptFit(1);
gStyle->SetStatX(.89);
gStyle->SetStatY(.89) ;
gStyle->SetStatBorderSize(0);
//gStyle->SetOptStat(1111111)
gStyle->SetCanvasColor(kWhite);   // background is no longer mouse-dropping white
gStyle->SetPalette(1);        // blue to red false color palette. Use 9 for b/w
gStyle->SetCanvasBorderMode(0);     // turn off canvas borders
gStyle->SetPadBorderMode(0);
gStyle->SetPaintTextFormat("5.2f");  // What precision to put numbers if plotted with "TEXT"

// For publishing:
gStyle->SetLineWidth(2);
gStyle->SetTextSize(1.1);
gStyle->SetLabelSize(0.06,"xy");
gStyle->SetTitleSize(0.08,"xy");
gStyle->SetTitleOffset(1.2,"x");
gStyle->SetTitleOffset(1.0,"y");
gStyle->SetPadTopMargin(0.1);
gStyle->SetPadRightMargin(0.1);
gStyle->SetPadBottomMargin(0.16);
gStyle->SetPadLeftMargin(0.12);
TGaxis::SetMaxDigits(1); // Set Axis to be of the form 0.11 10^N


       TFile *ifile  = new TFile(Ifile);
        
	TF1 *fitFcn  = new TF1("fitFcn", mygaus, FitLowRange, FitHighRange, 3 );
	fitFcn->SetNpx(500);
	fitFcn->SetLineWidth(4);
	fitFcn->SetLineStyle(5);
	fitFcn->SetLineColor(kBlue);
        cout <<" Calling Fitting Fxntion" << endl;
	TH1F*h_Seed_TimeEBEB = (TH1F*)ifile->Get("EBEB/seed time");
	if(h_Seed_TimeEBEB == 0){ std::cout  <<"!! Histogram Does not exist!!" << std::endl; throw 1;}
        
	h_Seed_TimeEBEB->SetTitle("Seed Time[ns]");   
        h_Seed_TimeEBEB->SetMarkerStyle(20);
        h_Seed_TimeEBEB->SetMarkerSize(0.8);
        h_Seed_TimeEBEB->SetStats(1);
        h_Seed_TimeEBEB->SetTitleSize(0.08, "x");   
        h_Seed_TimeEBEB->SetTitleOffset(1.0, "x");    
        h_Seed_TimeEBEB->SetTitleSize(0.06, "y"); 
        h_Seed_TimeEBEB->SetTitleOffset(0.95, "y");    
        h_Seed_TimeEBEB->SetYTitle("Number of Seeds/0.05ns"); 
        h_Seed_TimeEBEB->SetXTitle("t_{seed}[ns]"); 
        h_Seed_TimeEBEB->GetXaxis()->SetRangeUser(FitLowRange, FitHighRange);   

       /** Set parms as parms of Fit Fxn **/
	fitFcn->SetParameters(500, h_Seed_TimeEBEB->GetMean(), h_Seed_TimeEBEB->GetRMS() );
	fitFcn->SetParNames("CONST", "#mu(ns)", "#sigma(ns)");
	h_Seed_TimeEBEB->Fit("fitFcn", "LL"); /**Fit with improved LL**/
	std::cout << "Printing Fit Parameters for EBEB ......   " << std::endl;
        printf("Integral of function in EBEB = %g\n", fitFcn->Integral( FitLowRange, FitHighRange));

        //*** retrive fit results***//
        int npar = fitFcn->GetNpar();
        TVirtualFitter *fit = TVirtualFitter::GetFitter();
        fit->PrintResults(2,0.);
        TMatrixD *CovMatrix = new TMatrixD ( npar, npar, fit->GetCovarianceMatrix() );
	CovMatrix->Print();
        TCanvas *c1 = new TCanvas("c1","EB-EB",200,10,800,900);
     	c1->SetGridx();
     	c1->SetGridy();
	c1->GetFrame()->SetFillColor(21);
	c1->GetFrame()->SetBorderMode(-1);
	c1->GetFrame()->SetBorderSize(5);
        /* c1->Divide(2,1);  */
	c1->cd();
	h_Seed_TimeEBEB->Draw();
	fitFcn->Draw("sames");
        c1->SetLogy(0);
	//  draw the legend
    	TLegend *leg = new TLegend(0.15,0.72,0.3,0.85);
       	leg->SetTextFont(72);
        leg->SetTextSize(0.04);
        leg->AddEntry(h_Seed_TimeEBEB,"EB","lpe");
        leg->AddEntry(fitFcn,"GAUS","l");
        leg->Draw();
	c1->SaveAs("Seed_Time_DoubleElectron_Run2012A-EB-EB.png");
}       
コード例 #6
0
void factorizeCorrs(){
	
	bool doSpillover = false;
	
	const double xTrkBinDouble[11] = {0.5,0.7,1.,2.,3.,4.,8.,12.,16.,20.,30.};
	const string xCentBins[5] = {"Cent0", "Cent10", "Cent30","Cent50", "Cent100"};
	const string xTrkBinStr[11] = {"TrkPt05","TrkPt07","TrkPt1","TrkPt2","TrkPt3","TrkPt4","TrkPt8","TrkPt12","TrkPt16","TrkPt20","TrkPt300"};
	
	TFile *fsum;
	//if(!doSpillover) fsum = new TFile("JFFcorrs_PythHydjet_sube0_finalJFFJEC_CymbalTune_finalCymbalCorrs_withFits.root");
	if(!doSpillover) fsum = new TFile("JFFcorrs_PythHydjet_pTweighted_sube0_finalJFFJEC_withFits.root");
	else fsum = new TFile("JFFcorrs_PythiaHydjet_subeNon0_finalJFFJEC_CymbalTune_finalCymbalCorrs_eta1p5_withFits.root");
	
	TFile *fq = new TFile("JFFcorrs_PythiaHydjet_sube0_QuarkJets_finalJFFJEC_withFits.root");
	TFile *fg = new TFile("JFFcorrs_PythiaHydjet_sube0_GluonJets_finalJFFJEC_withFits.root");
	TFile *fhal = new TFile("/Users/kjung/Downloads/Inclusive_Hydjet_JFFResiduals.root");
	TFile *fhalSpill = new TFile("/Users/kjung/Downloads/Inclusive_Hydjet_SpillOvers.root");
	
	//TFile *fout;
	//if(doSpillover){
	//	fout = new TFile("JFFcorrs_spilloverFromsube0_newJFFs.root","recreate");
	//	fout->cd();
	//}
	TH2D *hnum[10][4], *hden[10][4];
	TH1D *fp1[10][4];
	
	TH2D *hq[10][4];
	TH2D *hg[10][4];
	
	TH1D *fpq[10][4];
	TH1D *fpg[10][4];
	
	TH1D *fh[10][4];
	
	TLatex *labels[4];
	TCanvas *cc = new TCanvas("cc","",2000,1600);
	cc->Divide(4,8);
	TLatex *labels2[10][4];
	
	TH1D *ptClosure[4];
	TH1D *ptClosureFit[4];
	TH1D *gptClosure[4];
	TH1D *qptClosure[4];
	TH1D *hptClosure[4];
	
	TF1 *gausFit[10][4];
	TF1 *gausFitg[10][4];
	TF1 *gausFitq[10][4];
	
	double *covMatrix[10][4];
	double *qcovMatrix[10][4];
	double *gcovMatrix[10][4];
	
	for(int j=0; j<4; j++){
		
		ptClosureFit[j] = new TH1D(Form("ptClosureFit_%d",j),"",10,xTrkBinDouble); ptClosureFit[j]->Sumw2();
		ptClosure[j] = new TH1D(Form("ptClosure_%d",j),"",10,xTrkBinDouble); ptClosure[j]->Sumw2();
		gptClosure[j] = new TH1D(Form("gptClosureFit_%d",j),"",10,xTrkBinDouble); gptClosure[j]->Sumw2();
		qptClosure[j] = new TH1D(Form("qptClosure_%d",j),"",10,xTrkBinDouble); qptClosure[j]->Sumw2();
		
		hptClosure[j] = new TH1D(Form("hptClosure_%d",j),"",10,xTrkBinDouble); hptClosure[j]->Sumw2();
		if(doSpillover){
			TGraphErrors *f1temp = (TGraphErrors*)fhalSpill->Get(Form("Integrals_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str()));
			cout << "getting " << Form("Integrals_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str()) << endl;
			for(int ibin=0; ibin<9; ibin++){
				cout << "ibin " << ibin << endl;
				cout << " content: "<< f1temp->GetY()[ibin] << endl;
				cout << "error: "<< f1temp->GetEY()[ibin] << endl;
				hptClosure[j]->SetBinContent(ibin+2, f1temp->GetY()[ibin]);
				if(f1temp->GetEY()[ibin]) hptClosure[j]->SetBinError(ibin+2, f1temp->GetEY()[ibin]);
				else hptClosure[j]->SetBinError(ibin+1, 0.0001);
			}
		}
				
		for(int i=0; i<10; i++){
			
			hnum[i][j] = (TH2D*)fsum->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("den_cent%d_pt%d",j,i));
			
			hq[i][j] = (TH2D*)fq->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("hq_jffCorr_cent%d_pt%d",j,i));
			hg[i][j] = (TH2D*)fg->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("hg_jffCorr_cent%d_pt%d",j,i));
			
			//if(i>0) fh[i][j] = (TH1D*)fhal->Get(Form("JFF_Residual_Eta_%s_%s_Pt100_Pt300_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str(),xTrkBinStr[i].c_str(),xTrkBinStr[i+1].c_str()))->Clone(Form("fh_cent%d_pt%d",j,i));
			
			//if(doSpillover){
			//	hnum[i][j]->Add(hden[i][j],-1);
			//	hnum[i][j]->Write();
			//}
			//else hnum[i][j] = hden[i][j];
			//hnum[i][j] = hden[i][j];
			
			gausFit[i][j] = new TF1(Form("gausFit_%d_%d",i,j),"gaus+[3]",-1,1);
			gausFit[i][j]->SetParLimits(0,0,1);
			gausFit[i][j]->SetParLimits(2,9e-2,5e-1);
			gausFit[i][j]->FixParameter(1,0);
			if(i<4) gausFit[i][j]->FixParameter(3,0);
			
			gausFitq[i][j] = new TF1(Form("qgausFit_%d_%d",i,j),"gaus+[3]",-1,1);
			gausFitg[i][j] = new TF1(Form("ggausFit_%d_%d",i,j),"gaus+[3]",-1,1);
			gausFitq[i][j]->SetParLimits(0,0,1);
			gausFitq[i][j]->SetParLimits(2,9e-2,5e-1);
			gausFitq[i][j]->FixParameter(1,0);
			if(i<4) gausFitq[i][j]->FixParameter(3,0);
			gausFitg[i][j]->SetParLimits(0,0,1);
			gausFitg[i][j]->SetParLimits(2,9e-2,5e-1);
			gausFitg[i][j]->FixParameter(1,0);
			if(i<4) gausFitg[i][j]->FixParameter(3,0);

			if(i>0 && i<10){
				cc->cd(i*4+(3-j)+1-4);
				int lowbin = hnum[i][j]->GetYaxis()->FindBin(-2.5);
				int hibin = hnum[i][j]->GetYaxis()->FindBin(2.5);
				fp1[i][j] = (TH1D*)hnum[i][j]->ProjectionX(Form("ipfx_%d%d",i,j),lowbin,hibin,"e");
				fpq[i][j] = (TH1D*)hq[i][j]->ProjectionX(Form("qpfx_%d%d",i,j),0,-1,"e");
				fpg[i][j] = (TH1D*)hg[i][j]->ProjectionX(Form("gpfx_%d%d",i,j),0,-1,"e");
				
				fp1[i][j]->Rebin(5);
				fpq[i][j]->Rebin(5);
				fpg[i][j]->Rebin(5);
				
				/*fp1[i][j]->Scale(1./fp1[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));
				fpq[i][j]->Scale(1./fpq[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));
				fpg[i][j]->Scale(1./fpg[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));*/
				
				if(doSpillover){
					fp1[i][j]->Fit(gausFit[i][j],"BqN0","",-1.5,1.5);
					TVirtualFitter *fitter = TVirtualFitter::GetFitter();
					assert(fitter!=0);
					covMatrix[i][j] = fitter->GetCovarianceMatrix();
					fpg[i][j]->Fit(gausFitg[i][j],"BqN0","",-1.5,1.5);				
					fpq[i][j]->Fit(gausFitq[i][j],"BqN0","",-1.5,1.5);
				}
				fp1[i][j]->SetLineColor(1);
				fpq[i][j]->SetLineColor(4);
				fpg[i][j]->SetLineColor(2);
				fp1[i][j]->GetXaxis()->SetRangeUser(-2.5,2.5);
				fp1[i][j]->GetYaxis()->SetNdivisions(505);
				fp1[i][j]->GetYaxis()->SetLabelSize(0.15);
				fp1[i][j]->GetXaxis()->SetLabelSize(0.15);
				fp1[i][j]->SetMaximum(fpg[i][j]->GetMaximum()*1.5);
				fp1[i][j]->SetMinimum(fpq[i][j]->GetMinimum()*1.5);
				
				//fh[i][j]->SetMarkerColor(kMagenta-2);
				
				if(!doSpillover){
					fp1[i][j]->Scale(1./fp1[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1));
					fpq[i][j]->Scale(1./fpq[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1));
					fpg[i][j]->Scale(1./fpg[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1));
				}
				
				fp1[i][j]->Draw();
				//fpq[i][j]->Divide(fp1[i][j]);
				//fpq[i][j]->Draw("same");
				//fpg[i][j]->Divide(fp1[i][j]);
				fpg[i][j]->Draw("same");
				//fh[i][j]->Draw("same");
								
				labels2[i][j] = new TLatex(-1,fp1[i][j]->GetMaximum()*0.65,Form("%f < pt < %f, %s-%s",xTrkBinDouble[i],xTrkBinDouble[i+1],xCentBins[j].c_str(),xCentBins[j+1].c_str()));
				labels2[i][j]->SetTextSize(0.15);
				labels2[i][j]->Draw("same");
			
				double integrErr =0.;
				int lowbin2 = fp1[i][j]->FindBin(-1.5);
				int highbin2 = fp1[i][j]->FindBin(1.5);
				double integr = fp1[i][j]->IntegralAndError(lowbin2, highbin2, integrErr, "width");
				double integr2, integrErr2;
				double gInteg, qInteg;
				if(doSpillover){
					integr = gausFit[i][j]->Integral(-1.5,1.5);// - gausFit[i][j]->GetParameter(3)*2.;
					integrErr = calcIntegralError(gausFit[i][j]);
					
					cout << "integral error: "<< integrErr << endl;
					
					gInteg = gausFitg[i][j]->Integral(-1.5,1.5);// - gausFitg[i][j]->GetParameter(3)*2.;
					qInteg = gausFitq[i][j]->Integral(-1.5,1.5);// - gausFitq[i][j]->GetParameter(3)*2.;
				}
				else{
					gInteg = fpg[i][j]->Integral(lowbin2, highbin2,"width");
					qInteg = fpq[i][j]->Integral(lowbin2, highbin2,"width");
				}				
				
				ptClosure[j]->SetBinContent(i+1, integr);///ptClosure[j]->GetBinWidth(i+1));
				cout << "eta Bin " << ptClosure[j]->GetBinCenter(i+1) << " content: "<< integr << endl;
				if(doSpillover) ptClosure[j]->SetBinContent(i+1, ptClosure[j]->GetBinContent(i+1)/fp1[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));
				ptClosure[j]->SetBinError(i+1, integrErr);///ptClosure[j]->GetBinWidth(i+1));
				
				//ptClosureFit[j]->SetBinContent(i+1, integr2/ptClosureFit[j]->GetBinWidth(i+1)/fp1[i][j]->GetBinWidth(2));
				//ptClosureFit[j]->SetBinError(i+1, integrErr2/ptClosureFit[j]->GetBinWidth(i+1)/fp1[i][j]->GetBinWidth(2));
				
				gptClosure[j]->SetBinContent(i+1, gInteg);///ptClosure[j]->GetBinWidth(i+1));
				if(doSpillover) gptClosure[j]->SetBinContent(i+1, gptClosure[j]->GetBinContent(i+1)/fpg[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));
				gptClosure[j]->SetBinError(i+1, ptClosure[j]->GetBinError(i+1));
				
				qptClosure[j]->SetBinContent(i+1, qInteg);///ptClosure[j]->GetBinWidth(i+1));
				if(doSpillover) qptClosure[j]->SetBinContent(i+1, qptClosure[j]->GetBinContent(i+1)/fpq[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));
				qptClosure[j]->SetBinError(i+1, ptClosure[j]->GetBinError(i+1));
				
				int hbinlow = fh[i][j]->FindBin(-1.5);
				int hbinhi = fh[i][j]->FindBin(1.5);
							
				if(!doSpillover){	
					hptClosure[j]->SetBinContent(i+1, fp1[i][j]->IntegralAndError(hbinlow,hbinhi,integrErr,"width"));
					hptClosure[j]->SetBinError(i+1, integrErr);
				}
								
				cout << "cent bin " << j << " pt bin " << i << " integral: " << ptClosure[j]->GetBinContent(i+1) << " error: "<< ptClosure[j]->GetBinError(i+1) << endl;
				cout << "cent bin " << j << " pt bin " << i << " gluon integral: " << gInteg << endl;
				cout << "cent bin " << j << " pt bin " << i << " quark integral: " << qInteg << endl;
				cout << "cent bin " << j << " pt bin " << i << " hallie integral: " << hptClosure[j]->GetBinContent(i+1) << endl;
			}
		}
	}
	
	TCanvas *c2 = new TCanvas("c2","",2000,400);
	c2->Divide(4,1);
	for(int j=0; j<4; j++){
		c2->cd(4-j);
		//if(doSpillover) ptClosure[j] = ptClosureFit[j];
		ptClosure[j]->SetMaximum(0.7);
		if(doSpillover) ptClosure[j]->SetMaximum(2.8);
		ptClosure[j]->SetMinimum(-0.2-1*(!doSpillover));
		ptClosure[j]->SetXTitle("Track p_{T} (GeV/c)");
		if(!doSpillover) ptClosure[j]->SetYTitle("JFF Correction");
		else ptClosure[j]->SetYTitle("Spillover Correction");
		//ptClosure[j]->Divide(qptClosure[j]);
		ptClosure[j]->Draw();
		//ptClosureFit[j]->SetMarkerColor(2);
		//ptClosureFit[j]->SetLineColor(2);
		//if(doSpillover) ptClosureFit[j]->Draw("");
		gptClosure[j]->SetMarkerColor(2);
		//gptClosure[j]->SetYTitle("New/Old JFF Corrections");
		gptClosure[j]->SetXTitle("Track p_{T} (GeV/c)");
		//gptClosure[j]->Add(ptClosure[j],-1);
		//gptClosure[j]->SetMaximum(0.4);
		//gptClosure[j]->SetMinimum(-0.4);
		gptClosure[j]->Draw("same");
		qptClosure[j]->SetMarkerColor(4);
		//qptClosure[j]->Add(ptClosure[j],-1);
		qptClosure[j]->Draw("same");
		hptClosure[j]->SetMarkerStyle(20);
		hptClosure[j]->SetMarkerColor(kMagenta+2);
		//hptClosure[j]->Draw("Same");
		labels[j] = new TLatex(3,ptClosure[j]->GetMaximum()*0.75,Form("%s-%s",xCentBins[j].c_str(),xCentBins[j+1].c_str()));
		labels[j]->SetTextSize(0.06);
		labels[j]->Draw("same");
		if(j==0){
			cout << endl;
			for(int ibin=1; ibin<=qptClosure[j]->GetNbinsX(); ibin++){
				cout << qptClosure[j]->GetBinContent(ibin) << ", ";
			}
			cout << endl;
		}
	}
	
	/*TFile *fout = new TFile("Spillover_gausFits.root","recreate");
	fout->cd();
	for(int j=0; j<4; j++){
		for(int i=0; i<10; i++){
			gausFit[i][j]->Write();
		}
	}
	fout->Close();*/
			
}
コード例 #7
0
void ratioPlots_Zxx()
{

  // llbb_Mass_reco mfJetEta_450_600 mfJetEta_250_300 lljjMass_reco mjj_HighMass_reco drll_HighMass_reco

   TString Variable = "Zxx_Mass_reco";
//   TString Variable2 = "Zbb_Mass_reco";
   TString x_title = "M_{llxx}";
   Int_t N_Rebin = 10;

   Double_t yTopLimit = 3;

   TFile *f1 = TFile::Open("/home/fynu/amertens/storage/test/MG_PY6_/output/MG_PY6_/MG_PY6v9.root");
   TH1D *h1 = (TH1D*)f1->Get(Variable);
   h1->Sumw2();
//   h1->Add((TH1D*)f1->Get(Variable2));
   h1->SetDirectory(0);
   f1->Close();

   TFile *f2 = TFile::Open("/home/fynu/amertens/storage/test/aMCNLO_PY8_/output/aMCNLO_PY8_/aMCNLO_PY8v9.root");
   TH1D *h2 = (TH1D*)f2->Get(Variable);
   h2->Sumw2();
//   h2->Add((TH1D*)f2->Get(Variable2));
   h2->SetDirectory(0);
   f2->Close();

/*
   TFile *f3 = TFile::Open("/home/fynu/amertens/storage/test/MG_PY8_/output/MG_PY8_/MG_PY8.root");
   TH1D *h3 = (TH1D*)f3->Get(Variable);
   h3->SetDirectory(0);
   f3->Close();
*/
//   h1->Sumw2();
//   h2->Sumw2();
//   h3->Sumw2();

   cout << "MG_PY6      : " << h1->Integral() << endl;
   cout << "aMC@NLO_PY8 : " << h2->Integral() << endl;


   //h1->Scale(1.0/151456.0);
   //h2->Scale(1.0/1.45192e+09);
   //h2->Scale(1./12132.9);
   h1->Scale(1.0/h1->Integral());
   h2->Scale(1.0/h2->Integral());

   h1->Sumw2();
   h2->Sumw2();



//   h3->Scale(1.0/h3->Integral());

   h1->Rebin(N_Rebin);
   h2->Rebin(N_Rebin);
//   h3->Rebin(N_Rebin);

   TH1D *h1c = h1->Clone();
   h1c->Sumw2();
   TH1D *h2c = h2->Clone();
   h2c->Sumw2();

   TH1D *h1c2 = h1->Clone();
   h1c2->Sumw2();

   h2c->Add(h1c,-1);
   h2c->Divide(h1c);


   h1->SetTitle("");
   h2->SetTitle("");
//   h3->SetTitle("");


   h1->SetLineColor(kRed);
//   h3->SetLineColor(kGreen);

   TCanvas *c1 = new TCanvas("c1","example",600,700);
   TPad *pad1 = new TPad("pad1","pad1",0,0.5,1,1);
   pad1->SetBottomMargin(0);
   gStyle->SetOptStat(0);
   pad1->Draw();
   pad1->cd();
   h2->DrawCopy();
//   h3->DrawCopy("same");
   h1->GetYaxis()->SetLabelSize(0.1);
   h1->GetYaxis()->SetRangeUser(0, 0.2);// ,yTopLimit);
   h1->GetYaxis()->SetTitleSize(0.06);
   h1->GetYaxis()->SetTitleOffset(0.7);



   h1->Draw("same");

   TLegend *leg = new TLegend(0.6,0.7,0.89,0.89);
   leg->SetLineColor(0);
   leg->SetFillColor(0);
   //leg->AddEntry(h1,"t#bar{t} uncertainty","f");
   leg->AddEntry(h1,"MG5 + PY6","l");
   leg->AddEntry(h2,"aMC@NLO + PY8","l");
//   leg->AddEntry(h3,"MG5 + PY8","l");
   leg->Draw();

   
   c1->cd();

   TPad *pad2 = new TPad("pad2","pad2",0,0,1,0.5);
   pad2->SetTopMargin(0);
   pad2->SetBottomMargin(0.4);
   pad2->Draw();
   pad2->cd();
   pad2->SetGrid();
   h2->SetStats(0);
   h2->Divide(h1);
   //h2->SetMarkerStyle(21);
   h2->Draw("ep");
   h2->GetYaxis()->SetLabelSize(0.1);
   h2->GetYaxis()->SetRangeUser(-0.5, 2.5);// ,yTopLimit);
   h2->GetYaxis()->SetTitle("aMC@NLO+PY8 / MG5+PY6");
   h2->GetYaxis()->SetTitleSize(0.06);
   h2->GetYaxis()->SetTitleOffset(0.7);
   h2->GetXaxis()->SetLabelSize(0.1);
   h2->GetXaxis()->SetTitle(x_title);
   h2->GetXaxis()->SetTitleSize(0.16);
   h2->GetXaxis()->SetTitleOffset(0.9);
 //  Double_t matrix[4][4];
   h2->Fit("pol3","","",50.0,1200.0);
   TF1 *ratio = h2->GetFunction("pol3");
   TVirtualFitter *fitter = TVirtualFitter::GetFitter();
   TMatrixD matrix(4,4,fitter->GetCovarianceMatrix());
   Double_t errorPar00 = fitter->GetCovarianceMatrixElement(0,0);
   Double_t errorPar11 = fitter->GetCovarianceMatrixElement(1,1);
   Double_t errorPar22 = fitter->GetCovarianceMatrixElement(2,2);
   Double_t errorPar33 = fitter->GetCovarianceMatrixElement(3,3);
//   c1->cd();

   matrix.Print();

   //const TMatrixDSym m = matrix;
   const TMatrixDEigen eigen(matrix);
   const TMatrixD eigenVal = eigen.GetEigenValues();
   const TMatrixD V = eigen.GetEigenVectors(); 

   cout << "V" << endl;

   V.Print();

   cout << "eigenVal" << endl;

   eigenVal.Print();



   cout << "Recomputed diag" << endl;

   //const TMatrixD Vt(TMatrixD::kTransposed,V);
   //const TMatrixD Vinv = V.Invert();
   const TMatrixD Vt(TMatrixD::kTransposed,V);
   //cout << "V-1" << endl;
   //Vinv.Print();
   cout << "Vt" << endl;
   Vt.Print();

   const TMatrixD VAVt = Vt*matrix*V;
   VAVt.Print();


   const TVectorD FittedParam(4);
   FittedParam(0) = fitter->GetParameter(0);
   FittedParam(1) = fitter->GetParameter(1);
   FittedParam(2) = fitter->GetParameter(2);
   FittedParam(3) = fitter->GetParameter(3);
   FittedParam.Print();


   //const TVectorD FittedParamNB(4);
   const TVectorD PNb = V*FittedParam;
   cout << "Pnb" << endl;
   PNb.Print();
  

   cout << " Generating other parameters values " << endl;

   cout <<" V " << V(0,0) << endl;

   TRandom3 r;
   const TVectorD NewP(4);

   TH1D *hist100 = new TH1D("h100","h100",200,-5,5);
   TH1D *hist200 = new TH1D("h200","h200",200,-5,5);
   TH1D *hist400 = new TH1D("h400","h400",200,-5,5);
   TH1D *hist600 = new TH1D("h600","h600",100,-5,5);
   TH1D *hist800 = new TH1D("h800","h800",100,-5,5);
   TH1D *hist1000 = new TH1D("h1000","h1000",100,-5,5);

   TH1D *histp0 = new TH1D("p0","p0",100,-0.2,0.3);
   TH1D *histp1 = new TH1D("p1","p1",100,0.0,0.01);
   TH1D *histp2 = new TH1D("p2","p2",100,-0.00001,0);
   TH1D *histp3 = new TH1D("p3","p3",100,0,0.000000002);



   for (Int_t i = 0; i< 500; i++){
     NewP(0) = r.Gaus(PNb(0),sqrt(eigenVal(0,0)));
     NewP(1) = r.Gaus(PNb(1),sqrt(eigenVal(1,1)));
     NewP(2) = r.Gaus(PNb(2),sqrt(eigenVal(2,2)));
     NewP(3) = r.Gaus(PNb(3),sqrt(eigenVal(3,3)));
     //NewP.Print();

     //FittedParam.Print();

     const TVectorD NewP2 = Vt*NewP;
     //NewP2.Print();

     histp0->Fill(NewP2(0));
     histp1->Fill(NewP2(1));
     histp2->Fill(NewP2(2));
     histp3->Fill(NewP2(3));



     TF1 *newFit=new TF1("test","[0]+x*[1]+[2]*pow(x,2)+[3]*pow(x,3)",0,1400);
     newFit->SetParameters(NewP2(0),NewP2(1),NewP2(2),NewP2(3));
     newFit->SetLineColor(kBlue);

     Double_t area=0;
     for(Int_t it=1; it < 16; it++){
       //cout << "bin : " << it << " " << h1c2->GetBinContent(it) << endl;
       area += h1c2->GetBinContent(it)*newFit->Eval(100*it+50);
       }
   
     //newFit->Draw("same");
     //cout <<"val: " << newFit->Eval(200) << endl;
     hist100->Fill(newFit->Eval(100)/area);
     hist200->Fill(newFit->Eval(200)/area);
     hist400->Fill(newFit->Eval(400)/area);
     hist600->Fill(newFit->Eval(600)/area);
     hist800->Fill(newFit->Eval(800)/area);
     hist1000->Fill(newFit->Eval(1000)/area);
     }

   c1->cd();
   TCanvas *c2 = new TCanvas("c2","c2",1000,1000);
   c2->cd();
   c2->Divide(3,2);
   c2->cd(1);
   hist100->Draw();
   c2->cd(2);
   hist200->Draw();
   c2->cd(3);
   hist400->Draw();
   c2->cd(4);
   hist600->Draw();
   c2->cd(5);
   hist800->Draw();
   c2->cd(6);
   hist1000->Draw();



Double_t m_100,m_200,m_400,m_600,m_800,m_1000;
Double_t s_100,s_200,s_400,s_600,s_800,s_1000;

hist100->Fit("gaus","","",0.3,1.2);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_100 = fitter->GetParameter(1);
s_100 = fitter->GetParameter(2);

hist200->Fit("gaus","","",0.5,1.2);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_200 = fitter->GetParameter(1);
s_200 = fitter->GetParameter(2);

hist400->Fit("gaus","","",0.8,1.2);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_400 = fitter->GetParameter(1);
s_400 = fitter->GetParameter(2);

hist600->Fit("gaus","","",0.8,1.3);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_600 = fitter->GetParameter(1);
s_600 = fitter->GetParameter(2);

hist800->Fit("gaus","","",0.5,2);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_800 = fitter->GetParameter(1);
s_800 = fitter->GetParameter(2);

hist1000->Fit("gaus","","",0.5,2.5);
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
m_1000 = fitter->GetParameter(1);
s_1000 = fitter->GetParameter(2);


Double_t x[6],y[6],ym[6],yup[6],ydown[6];
x[0]=100; x[1]=200; x[2]=400;x[3]=600; x[4]=800; x[5]=1000;
yup[0]=ratio->Eval(100)+s_100;
yup[1]=ratio->Eval(200)+s_200;
yup[2]=ratio->Eval(400)+s_400;
yup[3]=ratio->Eval(600)+s_600;
yup[4]=ratio->Eval(800)+s_800;
yup[5]=ratio->Eval(1000)+s_1000;
ydown[0]=ratio->Eval(100)-s_100;
ydown[1]=ratio->Eval(200)-s_200;
ydown[2]=ratio->Eval(400)-s_400;
ydown[3]=ratio->Eval(600)-s_600;
ydown[4]=ratio->Eval(800)-s_800;
ydown[5]=ratio->Eval(1000)-s_1000;

y[0]=1+s_100/ratio->Eval(100);
y[1]=1+s_200/ratio->Eval(200);
y[2]=1+s_400/ratio->Eval(400);
y[3]=1+s_600/ratio->Eval(600);
y[4]=1+s_800/ratio->Eval(800);
y[5]=1+s_1000/ratio->Eval(1000);

ym[0]=-s_100/m_100;
ym[1]=-s_200/m_200;
ym[2]=-s_400/m_400;
ym[3]=-s_600/m_600;
ym[4]=-s_800/m_800;
ym[5]=-s_1000/m_1000;


TGraph* g = new TGraph(6,x,y);
TGraph* gm = new TGraph(6,x,ym);
TGraph* gup = new TGraph(6,x,yup);
TGraph* gdown = new TGraph(6,x,ydown);


TCanvas *c3 = new TCanvas("c3","c3",1000,1000);
c3->cd();

//gup->Draw("AC*");
//gdown->Draw("C*");
g->Draw("AC*");

gPad->SetBottomMargin(0.2);
gPad->SetLeftMargin(0.2);
gStyle->SetOptStat(0);

g->GetXaxis()->SetTitle("M_{Zbb}");
g->GetXaxis()->SetRangeUser(50,1100);
g->GetYaxis()->SetLabelSize(0.06);
g->GetYaxis()->SetTitle("Uncertainty");
g->GetYaxis()->SetTitleSize(0.06);
g->GetYaxis()->SetTitleOffset(1.4);
g->GetXaxis()->SetLabelSize(0.06);
g->GetXaxis()->SetTitleSize(0.06);
g->GetXaxis()->SetTitleOffset(1);
g->GetYaxis()->SetNdivisions(5);

TFile f("syst_zxx.root","recreate");
g->Write();
f.Close();


//gm->Draw("C*");
//g->SetMaximum(1);
//g->SetMinimum(-1);
//h2c->Draw("same");


TH1D *h22=h2->Clone();

TCanvas *c5 =  new TCanvas("c5","c5",1000,1000);

gPad->SetBottomMargin(0.2);
gPad->SetLeftMargin(0.2);
gStyle->SetOptStat(0);

h22->Draw();
h22->GetXaxis()->SetRangeUser(50,1100);
h22->GetYaxis()->SetLabelSize(0.06);
h22->GetYaxis()->SetTitleSize(0.06);
h22->GetYaxis()->SetTitleOffset(1.4);
h22->GetXaxis()->SetLabelSize(0.06);
h22->GetXaxis()->SetTitleSize(0.06);
h22->GetXaxis()->SetTitleOffset(1);

ratio->SetLineColor(kRed);
ratio->Draw("same");

gup->Draw("C");
gdown->Draw("C");


TLegend *leg = new TLegend(0.6,0.7,0.89,0.89);
leg->SetLineColor(0);
leg->SetFillColor(0);
leg->AddEntry(h22,"aMC@NLO / MG5","lep");
leg->AddEntry(ratio,"best fit","l");
leg->AddEntry(gup,"Syst Error (#pm 1 #sigma)","l");
leg->Draw();



TCanvas *c4 = new TCanvas("c4","c4",1000,1000);
c4->Divide(2,2);
c4->cd(1);
histp0->Draw();
c4->cd(2);
histp1->Draw();
c4->cd(3);
histp2->Draw();
c4->cd(4);
histp3->Draw();


}
コード例 #8
0
void Demo_TryExtrapolationInXT_Exp0_LogLogFits(Bool_t xt=kTRUE, Float_t expo=0.)
{
        SetStyle();
        gStyle->SetOptFile(0);
        gStyle->SetOptStat(0);
        gStyle->SetOptFit(0);
 
        xt=kTRUE;

	//define dummy histogram and some style parameters
	TH1F *dum;
 	dum = new TH1F("dum","",160,5e-4,0.3); 
	dum->SetMinimum(1e-14);
	dum->SetMaximum(1);
	dum->SetTitle(Form(";x_{T};#sqrt{s}^{%0.1f}  E d^{3}#sigma/dp^{3}",expo));
	dum->SetLineWidth(0);
	dum->SetStats(0);
	dum->GetXaxis()->CenterTitle();
	dum->GetYaxis()->CenterTitle();
	dum->GetXaxis()->SetTitleSize(0.05);
	dum->GetYaxis()->SetTitleSize(0.05);
	dum->GetXaxis()->SetTitleOffset(1.17);
	dum->GetYaxis()->SetTitleOffset(1.3);

	gROOT->LoadMacro("/net/hidsk0001/d00/scratch/krajczar/ppRefForpPb_PilotRun/interpolation_HIN10005_kk/data_table_to_graph.C");

	//get 7 TeV points
	TGraphErrors *cms_7000_g = data_table_to_graph("cms",7000,xt,expo);
	cms_7000_g->SetMarkerColor(kBlack);
	
	TF1 *cms_7000_fit = new TF1("cms_7000_fit","[0]*pow(1.0+(x/[1]),[2])",10.*2./7000.,0.1);//Fit from 10 GeV/c
	cms_7000_fit->SetLineWidth(1);
	cms_7000_fit->SetParameters(3e22,2.5e-4,-7);
	cms_7000_g->Fit(cms_7000_fit,"REMW0");
	
	//get 2.36 TeV points
//	TGraphErrors *cms_2360_g = data_table_to_graph("cms",2360,xt,expo);
//	cms_2360_g->SetMarkerColor(kMagenta+3);
	
//	TF1 *cms_2360_fit = new TF1("cms_2360_fit","[0]*pow(1.0+(x/[1]),[2])",2e-3,0.1);
//	cms_2360_fit->SetLineWidth(1);
//	cms_2360_fit->SetParameters(3e22,2.5e-4,-7);
//	cms_2360_g->Fit(cms_2360_fit,"REMW0");

	//get 2.76 TeV points (KK using existing txt files)
	TGraphErrors *cms_2760_g = data_table_to_graph("cms",2760,xt,expo);
	cms_2760_g->SetMarkerColor(kMagenta+3);
	TF1 *cms_2760_fit = new TF1("cms_2760_fit","[0]*pow(1.0+(x/[1]),[2])",10.*2./2760.,0.1);//Fit from 10 GeV/c
	cms_2760_fit->SetLineColor(kMagenta+3);
	cms_2760_fit->SetLineWidth(1);
	cms_2760_fit->SetParameters(3e22,2.5e-4,-7);
	cms_2760_g->Fit(cms_2760_fit,"REMW0");
	
	//get 1.96 TeV points
	TGraphErrors *cdf_1960_g = data_table_to_graph("cdf",1960,xt,expo);
	cdf_1960_g->SetMarkerColor(kOrange-3);
	cdf_1960_g->SetMarkerStyle(30);
	
	//TGraphErrors *cdfold_1960_g = data_table_to_graph("cdfold",1960,xt);
	//cdfold_1960_g->SetMarkerColor(kBlue);
	//cdfold_1960_g->SetMarkerStyle(30);
	
	TF1 *cdf_1960_fit = new TF1("cdf_1960_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./1960.,0.1);//Fit from 10 GeV/c
	cdf_1960_fit->SetLineColor(kOrange-3);
	cdf_1960_fit->SetLineWidth(1);
	cdf_1960_fit->SetParameters(3e22,2.5e-4,-7);
	cdf_1960_g->Fit(cdf_1960_fit,"REMW0");
	
	//get 1.8 TeV points
	TGraphErrors *cdf_1800_g = data_table_to_graph("cdf",1800,xt,expo);
	cdf_1800_g->SetMarkerColor(kGreen+3);
	cdf_1800_g->SetMarkerStyle(28);

	TF1 *cdf_1800_fit = new TF1("cdf_1800_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./1800.,0.1);//Fit from 10 GeV/c
	cdf_1800_fit->SetLineColor(kGreen+3);
	cdf_1800_fit->SetLineWidth(1);
	cdf_1800_fit->SetParameters(3e22,2.5e-4,-7.2);
	cdf_1800_fit->FixParameter(2,-7.2);
	cdf_1800_g->Fit(cdf_1800_fit,"REMW0");
	
	//get 0.9 TeV points
	TGraphErrors *cms_900_g = data_table_to_graph("cms",900,xt,expo);
	cms_900_g->SetMarkerColor(kRed);
	
	TF1 *cms_900_fit = new TF1("cms_900_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./900.,0.01);//Fit from 10 GeV/c
	cms_900_fit->SetLineColor(kRed);
	cms_900_fit->SetLineWidth(1);
	cms_900_fit->SetParameters(3e22,2.5e-4,-7);
	cms_900_g->Fit(cms_900_fit,"REMW0");
	
//	TGraphErrors *ua1_900_g = data_table_to_graph("ua1",900,xt,expo);
//	ua1_900_g->SetMarkerColor(kCyan+1);
//	ua1_900_g->SetMarkerStyle(26);

	// get 0.63 TeV points
	TGraphErrors *cdf_630_g = data_table_to_graph("cdf",630,xt,expo);
	cdf_630_g->SetMarkerColor(kOrange+3);
	cdf_630_g->SetMarkerStyle(27);

	//draw graphs to canvas
	TCanvas *c1 = new TCanvas("c1","spectra interpolation",600,600);
	dum->Draw();
        //Fits are already drawn, no draw the points on top of the fits
	cdf_1960_g->Draw("pz");
	//cdfold_1960_g->Draw("pz");
//	cdf_1800_g->Draw("pz");
//	if(!xt) ua1_900_g->Draw("pz"); // abs(eta) within 2.5 changes high xt behavior
//	cdf_630_g->Draw("pz");
	cms_900_g->Draw("pz");         // draw the CMS points on top
//	cms_2360_g->Draw("pz");
	cms_2760_g->Draw("pz"); //KK
	cms_7000_g->Draw("pz");

	//make legend
	TLegend *leg1 = new TLegend(0.2,0.21,0.50,0.51,"p+p(#bar{p})");
	leg1->SetBorderSize(0);
	leg1->SetFillStyle(1);
	leg1->SetFillColor(0);
	leg1->AddEntry(cms_7000_g,"7 TeV  (CMS)","lp");
	leg1->AddEntry(cms_2760_g,"2.76 TeV (CMS)","lp");
//	leg1->AddEntry(cms_2360_g,"2.36 TeV (CMS)","lp");
	leg1->AddEntry(cdf_1960_g,"1.96 TeV  (CDF)","lp");
//	leg1->AddEntry(cdf_1800_g,"1.8 TeV  (CDF)","lp");
	leg1->AddEntry(cms_900_g,"0.9 TeV  (CMS)","lp");
//	if(!xt) leg1->AddEntry(ua1_900_g,"0.9 TeV  (UA1)  |#eta|<2.5","lp");
//	leg1->AddEntry(cdf_630_g,"0.63 TeV  (CDF)","lp");
	leg1->Draw();
	
	gPad->SetLogy();
	//if(xt) gPad->SetLogx();
	gPad->SetLogx();
	
	cms_7000_fit->Draw("same");
	cms_2760_fit->Draw("same");
	cdf_1960_fit->Draw("same");
//	cdf_1800_fit->Draw("same");
	cms_900_fit->Draw("same");

	TCanvas *c3 = new TCanvas("c3","Individual xT fits, residuals",600,500);
	TH1F *hratio = new TH1F("hratio",";x_{T};ratio",160,0.0003,0.07); //was 0.003-0.04
	hratio->SetMaximum(2.0);
	hratio->SetMinimum(0.0);
	hratio->SetStats(0);
	hratio->Draw();
		
	TGraphErrors* ratio_cdf_1960_g = divide_graph_by_function(cdf_1960_g,cdf_1960_fit);
	ratio_cdf_1960_g->SetName("ratio_cdf_1960_g");
	ratio_cdf_1960_g->SetLineColor(kOrange-9);
	ratio_cdf_1960_g->SetMarkerSize(0.9);
	ratio_cdf_1960_g->Draw("samepz");
		
	TF1 *fit1960 = new TF1("fit1960","[0]+[1]*log(x)+[2]/x/x",0.001,0.035);
	fit1960->SetLineWidth(2);
	fit1960->SetLineColor(kOrange-3);
	ratio_cdf_1960_g->Fit(fit1960,"REMW");
	fit1960->Draw("same");
		
//	TGraphErrors* ratio_cdf_1800_g = divide_graph_by_function(cdf_1800_g,cdf_1800_fit);
//	ratio_cdf_1800_g->Draw("samepz");
		
//	TGraphErrors* ratio_cdf_630_g = divide_graph_by_function(cdf_630_g,merge_fit);
	//ratio_cdf_630_g->Draw("pz");
	
	TGraphErrors* ratio_cms_7000_g = divide_graph_by_function(cms_7000_g,cms_7000_fit);
	ratio_cms_7000_g->SetName("ratio_cms_7000_g");
	ratio_cms_7000_g->Draw("samepz");
		
	TF1 *fit7000 = new TF1("fit7000","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.001,0.1);
	fit7000->SetLineWidth(2);
	ratio_cms_7000_g->Fit(fit7000,"REMW");

	TGraphErrors* ratio_cms_2760_g = divide_graph_by_function(cms_2760_g,cms_2760_fit);
	ratio_cms_2760_g->SetName("ratio_cms_2760_g");
	ratio_cms_2760_g->SetLineColor(kMagenta+3);
	ratio_cms_2760_g->Draw("samepz");
		
        TF1 *fit2760 = new TF1("fit2760","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.001,0.1);
	fit2760->SetLineWidth(2);
	fit2760->SetLineColor(kMagenta+3);
	ratio_cms_2760_g->Fit(fit2760,"REM");//REMW
		
	TGraphErrors* ratio_cms_900_g = divide_graph_by_function(cms_900_g,cms_900_fit);
	ratio_cms_900_g->SetName("ratio_cms_900_g");
	ratio_cms_900_g->Draw("samepz");
		
        TF1 *fit900 = new TF1("fit900","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.007,0.1);
        fit900->SetParameters(5.61766e-01,5.24904e+01,-2.27817e+03,3.43955e+04);
	fit900->SetLineWidth(2);
	fit900->SetLineColor(2);
	ratio_cms_900_g->Fit(fit900,"REM");//REMW
	ratio_cms_900_g->SetLineColor(kRed);
		
	TGaxis *A1 = new TGaxis(0.0003,7.0,0.07,7.0,2510*0.0003,2510*0.07,410,"-");
	A1->SetTitle("p_{T} for #sqrt{s}=5.02 TeV");
	A1->Draw();

        //Real fit should be the fit*resid
	TH1D *h900 = new TH1D("h900","900 GeV fitted spectra;x_{T}",30400,0.005,0.05);
	h900->SetLineColor(kRed);
	TH1D *h1960 = new TH1D("h1960","1.96 TeV fitted spectra;x_{T}",30400,0.005,0.05);
	h1960->SetLineColor(kOrange-3);
	TH1D *h7000 = new TH1D("h7000","7 TeV fitted spectra;x_{T}",30400,0.005,0.05);
	TH1D *h1800 = new TH1D("h1800","1.8 TeV fitted spectra;x_{T}",30400,0.005,0.05);
	h1800->SetLineColor(kGreen+3);
	TH1D *h630 = new TH1D("h630","0.63 TeV fitted spectra;x_{T}",30400,0.005,0.05);
	h630->SetLineColor(kOrange+3);
	TH1D *h2760_EdTxt = new TH1D("h2760_EdTxt","2.76 TeV fitted spectra;x_{T}",30400,0.005,0.05);
	h2760_EdTxt->SetLineColor(kMagenta+3);

	for(int hbin=1; hbin<=30400; hbin++) {
		float xtbin = h900->GetBinCenter(hbin);
		h900->SetBinContent(hbin,cms_900_fit->Eval(xtbin)*fit900->Eval(xtbin));
		h1960->SetBinContent(hbin,cdf_1960_fit->Eval(xtbin)*fit1960->Eval(xtbin));
		h7000->SetBinContent(hbin,cms_7000_fit->Eval(xtbin)*fit7000->Eval(xtbin));
		h2760_EdTxt->SetBinContent(hbin,cms_2760_fit->Eval(xtbin)*fit2760->Eval(xtbin));
	}

	TCanvas *c5 = new TCanvas("c5","final x_{T} fits",600,500);
	TH1D* dumDirectInt = new TH1D("dumDirectInt","Final fits; x_{T} (GeV/c)",120,5e-4,0.3);
	dumDirectInt->SetMaximum(1);
	dumDirectInt->SetMinimum(1e-14);
	dumDirectInt->GetXaxis()->SetRangeUser(0.5,120.);
	dumDirectInt->SetStats(0);
	dumDirectInt->GetYaxis()->SetTitle("Ed^{3}#sigma/dp^{3}");
	dumDirectInt->Draw();
	h900->Draw("same");
	h1960->Draw("same");
	h7000->Draw("same");
	h2760_EdTxt->Draw("same");
	gPad->SetLogy();
	gPad->SetLogx();

	// inspect direct interpolations
	TCanvas *c6 = new TCanvas("c6","interpolations",600,500);
	c6->Divide(3,4);
	float s[6]; float xs[6]; float es[6]={0.0,0.0,0.0,0.0,0.0,0.0}; float exs[6];   TGraphErrors *gXS[12];
        float s_log[6]; float xs_log[6]; float es_log[6]={0.0,0.0,0.0,0.0,0.0,0.0}; float exs_log[6];
        TGraphErrors *gXS_log[12]; //KK test
        TGraphErrors *gXS_log_lemma[12]; //KK test
	float s1[1]={2.76}; float xs1[1]; float ex1[1]={0.0}; float ey1[1]; 		TGraphErrors *gXS1[12];
	float s1_5020[1]={5.02}; float xs1_5020[1]; float ex1_5020[1]={0.0}; float ey1_5020[1]; TGraphErrors *gXS1_5020[12];
	float s2[1]={2.76}; float xs2[1]; float ex2[1]={0.0}; float ey2[1]; 		TGraphErrors *gXS2[12];
	float s2_5020[1]={5.02}; float xs2_5020[1]; float ex2_5020[1]={0.0}; float ey2_5020[1]; TGraphErrors *gXS2_5020[12];
	float s900[1]={0.9}; float xs900[1]; float ex900[1]={0.0}; float ey900[1]; TGraphErrors *gXS900[12];
	float s1960[1]={1.96}; float xs1960[1]; float ex1960[1]={0.0}; float ey1960[1]; TGraphErrors *gXS1960[12];
	float s2760[1]={2.76}; float xs2760[1]; float ex2760[1]={0.0}; float ey2760[1]; TGraphErrors *gXS2760[12];
	float s7000[1]={7.0}; float xs7000[1]; float ex7000[1]={0.0}; float ey7000[1]; TGraphErrors *gXS7000[12];

	TF1 *fitXS[12];  TH1F *dumXS[12];
        TF1 *fitXS_log[12];
	float xtbins[12]={0.0051,0.007,0.01,0.015,0.02,0.025,0.03,0.035,0.04,0.042,0.045,0.049};
        //2pT/sqrt(s) = xT ==>> xT=0.0051 -> pT=12.8 GeV/c; xT=0.049 -> pT=123 GeV/c

        //errors        
        TMVA::TSpline1 *err_cms_900_xt = errors_from_graph(cms_900_g,0.115);
        TMVA::TSpline1 *err_cms_2760_xt = errors_from_graph(cms_2760_g,0.11);
        TMVA::TSpline1 *err_cms_7000_xt = errors_from_graph(cms_7000_g,0.04);	
        TMVA::TSpline1 *err_cdf_1960_xt = errors_from_graph(cdf_1960_g,0.06);

	for(Int_t ipt=0; ipt<=11; ipt++) {
						
		c6->cd(ipt+1);
		int npoints=0;

		xs[npoints]=h900->GetBinContent(h900->FindBin(xtbins[ipt])); s[npoints]=0.9; exs[npoints]=err_cms_900_xt->Eval(xtbins[ipt])*xs[npoints]; xs900[0]=xs[npoints]; ey900[0]=exs[npoints];
		xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints])));
                npoints++;

		xs[npoints]=h1960->GetBinContent(h1960->FindBin(xtbins[ipt])); s[npoints]=1.96; exs[npoints]=err_cdf_1960_xt->Eval(xtbins[ipt])*xs[npoints]; xs1960[0]=xs[npoints]; ey1960[0]=exs[npoints];
		xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints])));
                npoints++;
 
		xs[npoints]=h2760_EdTxt->GetBinContent(h2760_EdTxt->FindBin(xtbins[ipt])); s[npoints]=2.76; exs[npoints]=err_cms_2760_xt->Eval(xtbins[ipt])*xs[npoints]; xs2760[0]=xs[npoints]; ey2760[0]=exs[npoints];
		xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints])));
                npoints++;

		xs[npoints]=h7000->GetBinContent(h7000->FindBin(xtbins[ipt])); s[npoints]=7.0; exs[npoints]=err_cms_7000_xt->Eval(xtbins[ipt])*xs[npoints]; xs7000[0]=xs[npoints]; ey7000[0]=exs[npoints];
		xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints])));
                npoints++;
			
		dumXS[ipt] = new TH1F(Form("dumXS%d",ipt),Form("p_{T} = %0.0f GeV/c;#sqrt{s} [TeV]",xtbins[ipt]),100,0,20);
		dumXS[ipt]->SetMinimum(0.25*xs[npoints-1]);
		dumXS[ipt]->SetMaximum(4.0*xs[0]);
		dumXS[ipt]->SetStats(0);
		dumXS[ipt]->GetXaxis()->SetRangeUser(0.5,10.0);
              	dumXS[ipt]->GetXaxis()->CenterTitle();
               	dumXS[ipt]->GetYaxis()->CenterTitle();
               	dumXS[ipt]->GetYaxis()->SetTitle("Ed#sigma^{3}/dp^{3}");
               	dumXS[ipt]->GetXaxis()->SetTitleSize(0.10);
               	dumXS[ipt]->GetYaxis()->SetTitleSize(0.10);
               	dumXS[ipt]->GetYaxis()->SetLabelSize(0.10);
               	dumXS[ipt]->GetXaxis()->SetLabelSize(0.10);
               	dumXS[ipt]->GetXaxis()->SetTitleOffset(0.6);
               	dumXS[ipt]->GetYaxis()->SetTitleOffset(0.8);
		dumXS[ipt]->Draw();
		gPad->SetLogy();  
                gPad->SetLogx();

                std::cerr<< "npoints: " << npoints << std::endl;

		gXS[ipt] = new TGraphErrors(npoints,s,xs,es,exs);  gXS[ipt]->SetName(Form("gXS%d",ipt));
		gXS[ipt]->SetMarkerStyle(20);
		gXS_log[ipt] = new TGraphErrors(npoints,s_log,xs_log,es_log,exs_log); gXS_log[ipt]->SetName(Form("gXS_log%d",ipt));

		gXS900[ipt] = new TGraphErrors(1,s900,xs900,ex900,ey900); gXS900[ipt]->SetName(Form("gXS900_%d",ipt)); 
		gXS900[ipt]->SetMarkerStyle(20);  gXS900[ipt]->SetMarkerColor(kRed); gXS900[ipt]->Draw("pz");

		gXS1960[ipt] = new TGraphErrors(1,s1960,xs1960,ex1960,ey1960); gXS1960[ipt]->SetName(Form("gXS1960_%d",ipt)); 
		gXS1960[ipt]->SetMarkerStyle(30);  gXS1960[ipt]->SetMarkerColor(kOrange-3); gXS1960[ipt]->Draw("pz");

		gXS2760[ipt] = new TGraphErrors(1,s2760,xs2760,ex2760,ey2760); gXS2760[ipt]->SetName(Form("gXS2760_%d",ipt)); 
		gXS2760[ipt]->SetMarkerStyle(20);  gXS2760[ipt]->SetMarkerColor(kMagenta+3); gXS2760[ipt]->Draw("pz");	

		gXS7000[ipt] = new TGraphErrors(1,s7000,xs7000,ex7000,ey7000); gXS7000[ipt]->SetName(Form("gXS7000_%d",ipt)); 
		gXS7000[ipt]->SetMarkerStyle(20);  gXS7000[ipt]->SetMarkerColor(kBlack); gXS7000[ipt]->Draw("pz");	
			
		fitXS_log[ipt] = new TF1(Form("fitXS_log%d",ipt),"pol2",-0.52288,0.85733);
		gXS_log[ipt]->Fit(fitXS_log[ipt], "REM0"); //"REMW");

		// full covariance errors on fit
		TVirtualFitter *fitter = TVirtualFitter::GetFitter();
		TMatrixD matrix(3,3,fitter->GetCovarianceMatrix());
		Double_t e00 = fitter->GetCovarianceMatrixElement(0,0);
		Double_t e11 = fitter->GetCovarianceMatrixElement(1,1);
		Double_t e22 = fitter->GetCovarianceMatrixElement(2,2);
		Double_t e01 = fitter->GetCovarianceMatrixElement(0,1);
		Double_t e02 = fitter->GetCovarianceMatrixElement(0,2);
		Double_t e12 = fitter->GetCovarianceMatrixElement(1,2);

                //Due to properties of the covariance matrix:
                Double_t e10 = e01;
                Double_t e20 = e02;
                Double_t e21 = e12;

                gXS_log_lemma[ipt] = new TGraphErrors(); gXS_log_lemma[ipt]->SetName(Form("gXS_log_lemma%d",ipt));
                int kkk = 0;
                for(int kk = log10(0.8*s[0])*10000.; kk <= log10(1.3*s[npoints-1])*10000.; kk++) {
                      float kk_lemma = kk/10000.;
                      float value = fitXS_log[ipt]->Eval(kk_lemma);
                      gXS_log_lemma[ipt]->SetPoint(kkk,TMath::Power(10,kk_lemma),TMath::Power(10,value));
                      kkk++;
                }
                gXS_log_lemma[ipt]->SetLineColor(2);
                gXS_log_lemma[ipt]->Draw("same");
			
		cout << "cov(0,0) = " << e00 
		<< "\ncov(1,1) = " << e11 
		<< "\ncov(2,2) = " << e22 
		<< "\ncov(0,1) = " << e01 
		<< "\ncov(0,2) = " << e02 
		<< "\ncov(1,2) = " << e12 
		<< endl;
			
                //0.7007 = log10(5.02)
		Double_t fullerr2 = e00 + e11*0.7007*0.7007 + e22*0.7007*0.7007*0.7007*0.7007 + 2*e01*0.7007 + 2*e02*0.7007*0.7007 + 2*e12*0.7007*0.7007*0.7007;
                //Plan (1.,0.7007,0.7007^2)(COV)(1.,0.7007,0.7007^2):
                Double_t where = 0.7007;
                Double_t fullerr2_alternative = e00 + 2.*e01*where + 2.*e02*where*where + 2.*e12*where*where*where + e11*where*where + e22*where*where*where*where;
			
		cout << "full covariance error = " << TMath::Sqrt(fullerr2) << endl;
		cout << "full covariance error alternative: = " << TMath::Sqrt(fullerr2_alternative) << endl;
                float error_in_percentage = 100.*(TMath::Power(10,TMath::Sqrt(fullerr2))-1.);
                cout << "   on " << fitXS_log[ipt]->Eval(0.7007) << std::endl;
                cout << "   error in percentage: " << error_in_percentage << std::endl;

                //5020
		xs2_5020[0] = TMath::Power(10,fitXS_log[ipt]->Eval(0.7007));
		ey2_5020[0] = error_in_percentage*0.01*xs2_5020[0];
		gXS2_5020[ipt] = new TGraphErrors(1,s2_5020,xs2_5020,ex2_5020,ey2_5020); gXS2_5020[ipt]->SetName(Form("gXS2_5020_%d",ipt));
		gXS2_5020[ipt]->SetMarkerColor(7);
		gXS2_5020[ipt]->SetLineColor(7);
		gXS2_5020[ipt]->SetMarkerStyle(kOpenSquare);
		gXS2_5020[ipt]->Draw("pz");
	}
}