//____________________________________________________________________ void ErrorIntegral() { fitFunc = new TF1("f",f,0,1,NPAR); TH1D * h1 = new TH1D("h1","h1",50,0,1); double par[NPAR] = { 3.14, 1.}; fitFunc->SetParameters(par); h1->FillRandom("f",1000); // fill histogram sampling fitFunc fitFunc->SetParameter(0,3.); // vary a little the parameters h1->Fit(fitFunc); // fit the histogram h1->Draw(); /* calculate the integral*/ double integral = fitFunc->Integral(0,1); TVirtualFitter * fitter = TVirtualFitter::GetFitter(); assert(fitter != 0); double * covMatrix = fitter->GetCovarianceMatrix(); /* using new function in TF1 (from 12/6/2007)*/ double sigma_integral = fitFunc->IntegralError(0,1); std::cout << "Integral = " << integral << " +/- " << sigma_integral << std::endl; // estimated integral and error analytically double * p = fitFunc->GetParameters(); double ic = p[1]* (1-std::cos(p[0]) )/p[0]; double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0]; double c1c = (1-std::cos(p[0]) )/p[0]; // estimated error with correlations double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3] + 2.* c0c*c1c * covMatrix[1]); if ( std::fabs(sigma_integral-sic) > 1.E-6*sic ) std::cout << " ERROR: test failed : different analytical integral : " << ic << " +/- " << sic << std::endl; }
//____________________________________________________________________ void ErrorIntegral() { fitFunc = new TF1("f",f,0,1,NPAR); TH1D * h1 = new TH1D("h1","h1",50,0,1); double par[NPAR] = { 3.14, 1.}; fitFunc->SetParameters(par); h1->FillRandom("f",1000); // fill histogram sampling fitFunc fitFunc->SetParameter(0,3.); // vary a little the parameters h1->Fit(fitFunc); // fit the histogram h1->Draw(); // calculate the integral double integral = fitFunc->Integral(0,1); TVirtualFitter * fitter = TVirtualFitter::GetFitter(); assert(fitter != 0); double * covMatrix = fitter->GetCovarianceMatrix(); #ifdef HAVE_OLD_ROOT_VERSION // calculate now the error (needs the derivatives of the function // w..r.t the parameters) TF1 * deriv_par0 = new TF1("dfdp0",df_dPar,0,1,1); deriv_par0->SetParameter(0,0); TF1 * deriv_par1 = new TF1("dfdp1",df_dPar,0,1,1); deriv_par1->SetParameter(0,1.); double c[2]; c[0] = deriv_par0->Integral(0,1); c[1] = deriv_par1->Integral(0,1); double * epar = fitFunc->GetParErrors(); // without correlations double sigma_integral_0 = IntegralError(2,c,epar); // with correlations double sigma_integral = IntegralError(2,c,epar,covMatrix); #else // using new function in TF1 (from 12/6/2007) double sigma_integral = fitFunc->IntegralError(0,1); #endif std::cout << "Integral = " << integral << " +/- " << sigma_integral << std::endl; // estimated integral and error analytically double * p = fitFunc->GetParameters(); double ic = p[1]* (1-std::cos(p[0]) )/p[0]; double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0]; double c1c = (1-std::cos(p[0]) )/p[0]; // estimated error with correlations double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3] + 2.* c0c*c1c * covMatrix[1]); if ( std::fabs(sigma_integral-sic) > 1.E-6*sic ) std::cout << " ERROR: test failed : different analytical integral : " << ic << " +/- " << sic << std::endl; }
void FitDijetMass_Data() { TFile *inf = new TFile("MassResults_ak7calo.root"); TH1F *hCorMassDen = (TH1F*) inf->Get("DiJetMass"); hCorMassDen->SetXTitle("Corrected Dijet Mass (GeV)"); hCorMassDen->SetYTitle("Events/GeV"); hCorMassDen->GetYaxis()->SetTitleOffset(1.5); hCorMassDen->SetMarkerStyle(20); hCorMassDen->GetXaxis()->SetRangeUser(120.,900.); gROOT->ProcessLine(".L tdrstyle.C"); setTDRStyle(); tdrStyle->SetErrorX(0.5); tdrStyle->SetPadRightMargin(0.08); tdrStyle->SetLegendBorderSize(0); gStyle->SetOptFit(1111); tdrStyle->SetOptStat(0); TCanvas* c2 = new TCanvas("c2","DijetMass", 500, 500); /////// perform 4 parameters fit TF1 *func = new TF1("func", "[0]*((1-x/7000.+[3]*(x/7000)^2)^[1])/(x^[2])", 100., 1000.); func->SetParameter(0, 1.0e+08); func->SetParameter(1, -1.23); func->SetParameter(2, 4.13); func->SetParameter(3, 1.0); func->SetLineColor(4); func->SetLineWidth(3); TVirtualFitter::SetMaxIterations( 10000 ); TVirtualFitter *fitter; TMatrixDSym* cov_matrix; int fitStatus = hCorMassDen->Fit("func","LLI","",130.0, 800.0); // QCD fit TH1F *hFitUncertainty = hCorMassDen->Clone("hFitUncertainty"); hFitUncertainty->SetLineColor(5); hFitUncertainty->SetFillColor(5); hFitUncertainty->SetMarkerColor(5); if (fitStatus == 0) { fitter = TVirtualFitter::GetFitter(); double* m_elements = fitter->GetCovarianceMatrix(); cov_matrix = new TMatrixDSym( func->GetNumberFreeParameters(),m_elements); cov_matrix->Print(); double x, y, e; for(int i=0;i<hFitUncertainty->GetNbinsX();i++) { x = hFitUncertainty->GetBinCenter(i+1); y = func->Eval(x); e = QCDFitUncertainty( func, *cov_matrix, x); hFitUncertainty->SetBinContent(i+1,y); hFitUncertainty->SetBinError(i+1,e); } } hCorMassDen->Draw("ep"); gPad->Update(); TPaveStats *st = (TPaveStats*)hCorMassDen->FindObject("stats"); st->SetName("stats1"); st->SetX1NDC(0.3); //new x start position st->SetX2NDC(0.6); //new x end position st->SetTextColor(4); hCorMassDen->GetListOfFunctions()->Add(st); /////// perform 2 parameters fit TF1 *func2 = new TF1("func2", "[0]*(1-x/7000.)/(x^[1])", 100., 1000.); func2->SetParameter(0, 10000.); func2->SetParameter(1, 5.0); func2->SetLineWidth(3); fitStatus = hCorMassDen->Fit("func2","LLI","",130.0, 800.0); // QCD fit TH1F *hFitUncertainty2 = hCorMassDen->Clone("hFitUncertainty2"); hFitUncertainty2->SetLineColor(kGray); hFitUncertainty2->SetFillColor(kGray); hFitUncertainty2->SetMarkerColor(kGray); if (fitStatus == 0) { fitter = TVirtualFitter::GetFitter(); double* m_elements = fitter->GetCovarianceMatrix(); cov_matrix = new TMatrixDSym( func2->GetNumberFreeParameters(),m_elements); cov_matrix->Print(); double x, y, e; for(int i=0;i<hFitUncertainty2->GetNbinsX();i++) { x = hFitUncertainty2->GetBinCenter(i+1); y = func2->Eval(x); e = QCDFitUncertainty( func2, *cov_matrix, x); hFitUncertainty2->SetBinContent(i+1,y); hFitUncertainty2->SetBinError(i+1,e); } } hFitUncertainty->Draw("E3 same"); hCorMassDen->Draw("ep sames"); hFitUncertainty2->Draw("E3 same"); hCorMassDen->Draw("ep sames"); func2->Draw("same"); c2->SetLogy(1); /* TH1F *hCorMass = hCorMassDen->Clone("hCorMass"); for(int i=0; i<hCorMass->GetNbinsX(); i++){ hCorMass->SetBinContent(i+1, hCorMassDen->GetBinContent(i+1) * hCorMassDen->GetBinWidth(i+1)); hCorMass->SetBinError(i+1, hCorMassDen->GetBinError(i+1) * hCorMassDen->GetBinWidth(i+1)); } // Our observable is the invariant mass RooRealVar invMass("invMass", "Corrected dijet mass", 100., 1000.0, "GeV"); RooDataHist data( "data", "", invMass, hCorMass); ////////////////////////////////////////////// // make QCD model RooRealVar p0("p0", "# events", 600.0, 0.0, 10000000000.); RooRealVar p1("p1","p1", 3.975, -10., 10.) ; RooRealVar p2("p2","p2", 5.302, 4., 8.) ; RooRealVar p3("p3","p3", -1.51, -100., 100.) ; // // define QCD line shape RooGenericPdf qcdModel("qcdModel", "pow(1-@0/7000.+@3*(@0/7000.)*(@0/7000.),@1)*pow(@0/7000.,-@2)", RooArgList(invMass,p1,p2,p3)); // full model RooAddPdf model("model","qcd",RooArgList(qcdModel), RooArgList(p0)); //plot sig candidates, full model, and individual componenets // __ _ _ // / _(_) |_ // | |_| | __| // | _| | |_ // |_| |_|\__| // Important: fit integrating f(x) over ranges defined by X errors, rather // than taking point at center of bin RooFitResult* fit = model.fitTo(data, Minos(kFALSE), Extended(kTRUE), SumW2Error(kFALSE),Save(kTRUE), Range(130.,800.), Integrate(kTRUE) ); // to perform chi^2 minimization fit instead // RooFitResult* fit = model.chi2FitTo(data, Extended(kTRUE), // Save(),Range(50.,526.),Integrate(kTRUE) ); fit->Print(); //plot data TCanvas* cdataNull = new TCanvas("cdataNull","fit to dijet mass",500,500); RooPlot* frame1 = invMass.frame() ; data.plotOn(frame1, DataError(RooAbsData::SumW2) ) ; model.plotOn(frame1, LineColor(kBlue)) ; model.plotOn(frame1, VisualizeError(*fit, 1),FillColor(kYellow)) ; data.plotOn(frame1, DataError(RooAbsData::SumW2) ) ; model.plotOn(frame1, LineColor(kBlue)) ; model.paramOn(frame1, Layout(0.4, 0.85, 0.92)); TPaveText* dataPave = (TPaveText*) frame1->findObject("model_paramBox"); dataPave->SetY1(0.77); gPad->SetLogy(); frame1->GetYaxis()->SetNoExponent(); frame1->GetYaxis()->SetRangeUser(5E-2,5E+4); frame1->GetYaxis()->SetTitle("Events / bin"); frame1->GetYaxis()->SetTitleOffset(1.35); frame1->SetTitle("fit to data with QCD lineshape"); frame1->Draw() ; // S h o w r e s i d u a l a n d p u l l d i s t s // ------------------------------------------------------- //// Construct a histogram with the residuals of the data w.r.t. the curve RooHist* hresid = frame1->residHist() ; // Create a new frame to draw the residual distribution and add the distribution to the frame RooPlot* frame2 = invMass.frame(Title("Residual Distribution")) ; frame2->addPlotable(hresid,"P") ; ///// Construct a histogram with the pulls of the data w.r.t the curve RooHist* hpull = frame1->pullHist() ; //// Create a new frame to draw the pull distribution and add the distribution to the frame RooPlot* frame3 = invMass.frame(Title("Pull Distribution")) ; frame3->addPlotable(hpull,"P") ; TCanvas* cResidual = new TCanvas("cResidual","Residual Distribution",1000,500); cResidual->Divide(2) ; cResidual->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.6) ; frame2->Draw() ; cResidual->cd(2) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.6) ; frame3->Draw() ; */ }
void Fit_electron_nsigma_Mean(TH1F *mh1NisgmaE_unlike[NpT_bins_run12_MB],TH1F *mh1NisgmaE_like[NpT_bins_run12_MB],TH1F *mh1NisgmaE_unlike_like[NpT_bins_run12_MB]) { gStyle->SetOptFit(1111); TH1F *Mean=new TH1F("Mean","", NpT_bins_run12_MB,pt_run12_MB); TH1F *Mean_u=new TH1F("Mean_u","",NpT_bins_run12_MB,pt_run12_MB); TH1F *Mean_d=new TH1F("Mean_d","",NpT_bins_run12_MB,pt_run12_MB); TH1F *Sigma=new TH1F("Sigma","",NpT_bins_run12_MB,pt_run12_MB); TH1F *Sigma_u=new TH1F("Sigma_u","",NpT_bins_run12_MB,pt_run12_MB); TH1F *Sigma_d=new TH1F("Sigma_d","",NpT_bins_run12_MB,pt_run12_MB); TCanvas *c2=new TCanvas("c2","",1200,1000); TCanvas *c3=new TCanvas("c3","",1200,1000); TCanvas *c4=new TCanvas("c4","",1200,1000); TCanvas *c5=new TCanvas("c5","",1200,1000); c2->Divide(3,3,0.001,0.001); c3->Divide(3,3,0.001,0.001); c4->Divide(3,3,0.001,0.001); c5->Divide(3,3,0.001,0.001); int Npad=1; for(Int_t ipt=0;ipt<NpT_bins_run12_MB;ipt++) { TF1 *f1 = new TF1(TString("f1"),"gaus",-5,5); if(ipt<9) { c2->cd(Npad++); gPad->SetLogy(1); } else if(ipt<18) { c3->cd(Npad++); gPad->SetLogy(1); } else if(ipt<27) { c4->cd(Npad++); gPad->SetLogy(1); } else if(ipt<36) { c5->cd(Npad++); gPad->SetLogy(1); } if(Npad==10) Npad=1; mh1NisgmaE_unlike_like[ipt]->SetTitle(mh1_pT_Title[ipt]); mh1NisgmaE_unlike_like[ipt]->GetXaxis()->SetTitle("nSigmaE"); mh1NisgmaE_unlike_like[ipt]->GetYaxis()->SetTitle("Counts"); mh1NisgmaE_unlike_like[ipt]->GetYaxis()->SetRangeUser(1,1.2*mh1NisgmaE_unlike[ipt]->GetMaximum()); mh1NisgmaE_unlike_like[ipt]->GetXaxis()->SetRangeUser(-3,3); mh1NisgmaE_unlike[ipt]->SetLineColor(1); mh1NisgmaE_like[ipt]->SetLineColor(3); mh1NisgmaE_unlike_like[ipt]->SetLineColor(4); mh1NisgmaE_unlike_like[ipt]->Fit(f1,"R","same",-3,3); mh1NisgmaE_unlike[ipt]->Draw("same"); mh1NisgmaE_unlike_like[ipt]->Draw("same"); mh1NisgmaE_like[ipt]->Draw("same"); TLegend *legend = new TLegend(0.15,0.65,0.4,0.8); legend->AddEntry(mh1NisgmaE_unlike[ipt],"Unlike ","lpe"); legend->AddEntry(mh1NisgmaE_like[ipt],"Like ","lpe"); legend->AddEntry(mh1NisgmaE_unlike_like[ipt],"Unlike - Like ","lpe"); legend->SetBorderSize(0); legend->SetFillStyle(0); legend->SetTextSize(0.035); legend->Draw("same"); TVirtualFitter * fitter = TVirtualFitter::GetFitter(); assert(fitter != 0); double * cov =fitter->GetCovarianceMatrix(); cout<<cov[0]<<" "<<sqrt(cov[4])<<" "<<sqrt(cov[8])<<" "<<cov[7]<<" meanerr="<<f1->GetParError(1)<<"sigmaerr "<<f1->GetParError(2)<<endl; outdata << (pt_run12_MB[ipt]+pt_run12_MB[ipt+1])/2 << " " << 0.5*(pt_run12_MB[ipt+1]-pt_run12_MB[ipt]) << " " << f1->GetParameter(1) << " " << cov[4] << " " << f1->GetParameter(2) << " " << cov[8] << " "<<cov[7]<< endl; } c2->SaveAs("nsigmaE_c2_partner.pdf"); c3->SaveAs("nsigmaE_c3_partner.pdf"); c4->SaveAs("nsigmaE_c4_partner.pdf"); c5->SaveAs("nsigmaE_c5_partner.pdf"); }
//***############## main fitting Fxn ################ *****// void FitPlotAndSave( char *Ifile ){ /** Plot Options***/ //gROOT->Reset(); // gROOT->Clear(); gROOT->SetStyle("Plain") ; gROOT->SetBatch(kFALSE); gStyle->SetOptTitle(1); gStyle->SetOptStat(0); gStyle->SetOptFit(1); gStyle->SetStatX(.89); gStyle->SetStatY(.89) ; gStyle->SetStatBorderSize(0); //gStyle->SetOptStat(1111111) gStyle->SetCanvasColor(kWhite); // background is no longer mouse-dropping white gStyle->SetPalette(1); // blue to red false color palette. Use 9 for b/w gStyle->SetCanvasBorderMode(0); // turn off canvas borders gStyle->SetPadBorderMode(0); gStyle->SetPaintTextFormat("5.2f"); // What precision to put numbers if plotted with "TEXT" // For publishing: gStyle->SetLineWidth(2); gStyle->SetTextSize(1.1); gStyle->SetLabelSize(0.06,"xy"); gStyle->SetTitleSize(0.08,"xy"); gStyle->SetTitleOffset(1.2,"x"); gStyle->SetTitleOffset(1.0,"y"); gStyle->SetPadTopMargin(0.1); gStyle->SetPadRightMargin(0.1); gStyle->SetPadBottomMargin(0.16); gStyle->SetPadLeftMargin(0.12); TGaxis::SetMaxDigits(1); // Set Axis to be of the form 0.11 10^N TFile *ifile = new TFile(Ifile); TF1 *fitFcn = new TF1("fitFcn", mygaus, FitLowRange, FitHighRange, 3 ); fitFcn->SetNpx(500); fitFcn->SetLineWidth(4); fitFcn->SetLineStyle(5); fitFcn->SetLineColor(kBlue); cout <<" Calling Fitting Fxntion" << endl; TH1F*h_Seed_TimeEBEB = (TH1F*)ifile->Get("EBEB/seed time"); if(h_Seed_TimeEBEB == 0){ std::cout <<"!! Histogram Does not exist!!" << std::endl; throw 1;} h_Seed_TimeEBEB->SetTitle("Seed Time[ns]"); h_Seed_TimeEBEB->SetMarkerStyle(20); h_Seed_TimeEBEB->SetMarkerSize(0.8); h_Seed_TimeEBEB->SetStats(1); h_Seed_TimeEBEB->SetTitleSize(0.08, "x"); h_Seed_TimeEBEB->SetTitleOffset(1.0, "x"); h_Seed_TimeEBEB->SetTitleSize(0.06, "y"); h_Seed_TimeEBEB->SetTitleOffset(0.95, "y"); h_Seed_TimeEBEB->SetYTitle("Number of Seeds/0.05ns"); h_Seed_TimeEBEB->SetXTitle("t_{seed}[ns]"); h_Seed_TimeEBEB->GetXaxis()->SetRangeUser(FitLowRange, FitHighRange); /** Set parms as parms of Fit Fxn **/ fitFcn->SetParameters(500, h_Seed_TimeEBEB->GetMean(), h_Seed_TimeEBEB->GetRMS() ); fitFcn->SetParNames("CONST", "#mu(ns)", "#sigma(ns)"); h_Seed_TimeEBEB->Fit("fitFcn", "LL"); /**Fit with improved LL**/ std::cout << "Printing Fit Parameters for EBEB ...... " << std::endl; printf("Integral of function in EBEB = %g\n", fitFcn->Integral( FitLowRange, FitHighRange)); //*** retrive fit results***// int npar = fitFcn->GetNpar(); TVirtualFitter *fit = TVirtualFitter::GetFitter(); fit->PrintResults(2,0.); TMatrixD *CovMatrix = new TMatrixD ( npar, npar, fit->GetCovarianceMatrix() ); CovMatrix->Print(); TCanvas *c1 = new TCanvas("c1","EB-EB",200,10,800,900); c1->SetGridx(); c1->SetGridy(); c1->GetFrame()->SetFillColor(21); c1->GetFrame()->SetBorderMode(-1); c1->GetFrame()->SetBorderSize(5); /* c1->Divide(2,1); */ c1->cd(); h_Seed_TimeEBEB->Draw(); fitFcn->Draw("sames"); c1->SetLogy(0); // draw the legend TLegend *leg = new TLegend(0.15,0.72,0.3,0.85); leg->SetTextFont(72); leg->SetTextSize(0.04); leg->AddEntry(h_Seed_TimeEBEB,"EB","lpe"); leg->AddEntry(fitFcn,"GAUS","l"); leg->Draw(); c1->SaveAs("Seed_Time_DoubleElectron_Run2012A-EB-EB.png"); }
void factorizeCorrs(){ bool doSpillover = false; const double xTrkBinDouble[11] = {0.5,0.7,1.,2.,3.,4.,8.,12.,16.,20.,30.}; const string xCentBins[5] = {"Cent0", "Cent10", "Cent30","Cent50", "Cent100"}; const string xTrkBinStr[11] = {"TrkPt05","TrkPt07","TrkPt1","TrkPt2","TrkPt3","TrkPt4","TrkPt8","TrkPt12","TrkPt16","TrkPt20","TrkPt300"}; TFile *fsum; //if(!doSpillover) fsum = new TFile("JFFcorrs_PythHydjet_sube0_finalJFFJEC_CymbalTune_finalCymbalCorrs_withFits.root"); if(!doSpillover) fsum = new TFile("JFFcorrs_PythHydjet_pTweighted_sube0_finalJFFJEC_withFits.root"); else fsum = new TFile("JFFcorrs_PythiaHydjet_subeNon0_finalJFFJEC_CymbalTune_finalCymbalCorrs_eta1p5_withFits.root"); TFile *fq = new TFile("JFFcorrs_PythiaHydjet_sube0_QuarkJets_finalJFFJEC_withFits.root"); TFile *fg = new TFile("JFFcorrs_PythiaHydjet_sube0_GluonJets_finalJFFJEC_withFits.root"); TFile *fhal = new TFile("/Users/kjung/Downloads/Inclusive_Hydjet_JFFResiduals.root"); TFile *fhalSpill = new TFile("/Users/kjung/Downloads/Inclusive_Hydjet_SpillOvers.root"); //TFile *fout; //if(doSpillover){ // fout = new TFile("JFFcorrs_spilloverFromsube0_newJFFs.root","recreate"); // fout->cd(); //} TH2D *hnum[10][4], *hden[10][4]; TH1D *fp1[10][4]; TH2D *hq[10][4]; TH2D *hg[10][4]; TH1D *fpq[10][4]; TH1D *fpg[10][4]; TH1D *fh[10][4]; TLatex *labels[4]; TCanvas *cc = new TCanvas("cc","",2000,1600); cc->Divide(4,8); TLatex *labels2[10][4]; TH1D *ptClosure[4]; TH1D *ptClosureFit[4]; TH1D *gptClosure[4]; TH1D *qptClosure[4]; TH1D *hptClosure[4]; TF1 *gausFit[10][4]; TF1 *gausFitg[10][4]; TF1 *gausFitq[10][4]; double *covMatrix[10][4]; double *qcovMatrix[10][4]; double *gcovMatrix[10][4]; for(int j=0; j<4; j++){ ptClosureFit[j] = new TH1D(Form("ptClosureFit_%d",j),"",10,xTrkBinDouble); ptClosureFit[j]->Sumw2(); ptClosure[j] = new TH1D(Form("ptClosure_%d",j),"",10,xTrkBinDouble); ptClosure[j]->Sumw2(); gptClosure[j] = new TH1D(Form("gptClosureFit_%d",j),"",10,xTrkBinDouble); gptClosure[j]->Sumw2(); qptClosure[j] = new TH1D(Form("qptClosure_%d",j),"",10,xTrkBinDouble); qptClosure[j]->Sumw2(); hptClosure[j] = new TH1D(Form("hptClosure_%d",j),"",10,xTrkBinDouble); hptClosure[j]->Sumw2(); if(doSpillover){ TGraphErrors *f1temp = (TGraphErrors*)fhalSpill->Get(Form("Integrals_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str())); cout << "getting " << Form("Integrals_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str()) << endl; for(int ibin=0; ibin<9; ibin++){ cout << "ibin " << ibin << endl; cout << " content: "<< f1temp->GetY()[ibin] << endl; cout << "error: "<< f1temp->GetEY()[ibin] << endl; hptClosure[j]->SetBinContent(ibin+2, f1temp->GetY()[ibin]); if(f1temp->GetEY()[ibin]) hptClosure[j]->SetBinError(ibin+2, f1temp->GetEY()[ibin]); else hptClosure[j]->SetBinError(ibin+1, 0.0001); } } for(int i=0; i<10; i++){ hnum[i][j] = (TH2D*)fsum->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("den_cent%d_pt%d",j,i)); hq[i][j] = (TH2D*)fq->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("hq_jffCorr_cent%d_pt%d",j,i)); hg[i][j] = (TH2D*)fg->Get(Form("JFFcorrs_cent%d_pt%d",j,i))->Clone(Form("hg_jffCorr_cent%d_pt%d",j,i)); //if(i>0) fh[i][j] = (TH1D*)fhal->Get(Form("JFF_Residual_Eta_%s_%s_Pt100_Pt300_%s_%s",xCentBins[j].c_str(),xCentBins[j+1].c_str(),xTrkBinStr[i].c_str(),xTrkBinStr[i+1].c_str()))->Clone(Form("fh_cent%d_pt%d",j,i)); //if(doSpillover){ // hnum[i][j]->Add(hden[i][j],-1); // hnum[i][j]->Write(); //} //else hnum[i][j] = hden[i][j]; //hnum[i][j] = hden[i][j]; gausFit[i][j] = new TF1(Form("gausFit_%d_%d",i,j),"gaus+[3]",-1,1); gausFit[i][j]->SetParLimits(0,0,1); gausFit[i][j]->SetParLimits(2,9e-2,5e-1); gausFit[i][j]->FixParameter(1,0); if(i<4) gausFit[i][j]->FixParameter(3,0); gausFitq[i][j] = new TF1(Form("qgausFit_%d_%d",i,j),"gaus+[3]",-1,1); gausFitg[i][j] = new TF1(Form("ggausFit_%d_%d",i,j),"gaus+[3]",-1,1); gausFitq[i][j]->SetParLimits(0,0,1); gausFitq[i][j]->SetParLimits(2,9e-2,5e-1); gausFitq[i][j]->FixParameter(1,0); if(i<4) gausFitq[i][j]->FixParameter(3,0); gausFitg[i][j]->SetParLimits(0,0,1); gausFitg[i][j]->SetParLimits(2,9e-2,5e-1); gausFitg[i][j]->FixParameter(1,0); if(i<4) gausFitg[i][j]->FixParameter(3,0); if(i>0 && i<10){ cc->cd(i*4+(3-j)+1-4); int lowbin = hnum[i][j]->GetYaxis()->FindBin(-2.5); int hibin = hnum[i][j]->GetYaxis()->FindBin(2.5); fp1[i][j] = (TH1D*)hnum[i][j]->ProjectionX(Form("ipfx_%d%d",i,j),lowbin,hibin,"e"); fpq[i][j] = (TH1D*)hq[i][j]->ProjectionX(Form("qpfx_%d%d",i,j),0,-1,"e"); fpg[i][j] = (TH1D*)hg[i][j]->ProjectionX(Form("gpfx_%d%d",i,j),0,-1,"e"); fp1[i][j]->Rebin(5); fpq[i][j]->Rebin(5); fpg[i][j]->Rebin(5); /*fp1[i][j]->Scale(1./fp1[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1)); fpq[i][j]->Scale(1./fpq[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1)); fpg[i][j]->Scale(1./fpg[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1));*/ if(doSpillover){ fp1[i][j]->Fit(gausFit[i][j],"BqN0","",-1.5,1.5); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); assert(fitter!=0); covMatrix[i][j] = fitter->GetCovarianceMatrix(); fpg[i][j]->Fit(gausFitg[i][j],"BqN0","",-1.5,1.5); fpq[i][j]->Fit(gausFitq[i][j],"BqN0","",-1.5,1.5); } fp1[i][j]->SetLineColor(1); fpq[i][j]->SetLineColor(4); fpg[i][j]->SetLineColor(2); fp1[i][j]->GetXaxis()->SetRangeUser(-2.5,2.5); fp1[i][j]->GetYaxis()->SetNdivisions(505); fp1[i][j]->GetYaxis()->SetLabelSize(0.15); fp1[i][j]->GetXaxis()->SetLabelSize(0.15); fp1[i][j]->SetMaximum(fpg[i][j]->GetMaximum()*1.5); fp1[i][j]->SetMinimum(fpq[i][j]->GetMinimum()*1.5); //fh[i][j]->SetMarkerColor(kMagenta-2); if(!doSpillover){ fp1[i][j]->Scale(1./fp1[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1)); fpq[i][j]->Scale(1./fpq[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1)); fpg[i][j]->Scale(1./fpg[i][j]->GetBinWidth(1)/ptClosure[j]->GetBinWidth(i+1)); } fp1[i][j]->Draw(); //fpq[i][j]->Divide(fp1[i][j]); //fpq[i][j]->Draw("same"); //fpg[i][j]->Divide(fp1[i][j]); fpg[i][j]->Draw("same"); //fh[i][j]->Draw("same"); labels2[i][j] = new TLatex(-1,fp1[i][j]->GetMaximum()*0.65,Form("%f < pt < %f, %s-%s",xTrkBinDouble[i],xTrkBinDouble[i+1],xCentBins[j].c_str(),xCentBins[j+1].c_str())); labels2[i][j]->SetTextSize(0.15); labels2[i][j]->Draw("same"); double integrErr =0.; int lowbin2 = fp1[i][j]->FindBin(-1.5); int highbin2 = fp1[i][j]->FindBin(1.5); double integr = fp1[i][j]->IntegralAndError(lowbin2, highbin2, integrErr, "width"); double integr2, integrErr2; double gInteg, qInteg; if(doSpillover){ integr = gausFit[i][j]->Integral(-1.5,1.5);// - gausFit[i][j]->GetParameter(3)*2.; integrErr = calcIntegralError(gausFit[i][j]); cout << "integral error: "<< integrErr << endl; gInteg = gausFitg[i][j]->Integral(-1.5,1.5);// - gausFitg[i][j]->GetParameter(3)*2.; qInteg = gausFitq[i][j]->Integral(-1.5,1.5);// - gausFitq[i][j]->GetParameter(3)*2.; } else{ gInteg = fpg[i][j]->Integral(lowbin2, highbin2,"width"); qInteg = fpq[i][j]->Integral(lowbin2, highbin2,"width"); } ptClosure[j]->SetBinContent(i+1, integr);///ptClosure[j]->GetBinWidth(i+1)); cout << "eta Bin " << ptClosure[j]->GetBinCenter(i+1) << " content: "<< integr << endl; if(doSpillover) ptClosure[j]->SetBinContent(i+1, ptClosure[j]->GetBinContent(i+1)/fp1[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1)); ptClosure[j]->SetBinError(i+1, integrErr);///ptClosure[j]->GetBinWidth(i+1)); //ptClosureFit[j]->SetBinContent(i+1, integr2/ptClosureFit[j]->GetBinWidth(i+1)/fp1[i][j]->GetBinWidth(2)); //ptClosureFit[j]->SetBinError(i+1, integrErr2/ptClosureFit[j]->GetBinWidth(i+1)/fp1[i][j]->GetBinWidth(2)); gptClosure[j]->SetBinContent(i+1, gInteg);///ptClosure[j]->GetBinWidth(i+1)); if(doSpillover) gptClosure[j]->SetBinContent(i+1, gptClosure[j]->GetBinContent(i+1)/fpg[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1)); gptClosure[j]->SetBinError(i+1, ptClosure[j]->GetBinError(i+1)); qptClosure[j]->SetBinContent(i+1, qInteg);///ptClosure[j]->GetBinWidth(i+1)); if(doSpillover) qptClosure[j]->SetBinContent(i+1, qptClosure[j]->GetBinContent(i+1)/fpq[i][j]->GetBinWidth(2)/ptClosure[j]->GetBinWidth(i+1)); qptClosure[j]->SetBinError(i+1, ptClosure[j]->GetBinError(i+1)); int hbinlow = fh[i][j]->FindBin(-1.5); int hbinhi = fh[i][j]->FindBin(1.5); if(!doSpillover){ hptClosure[j]->SetBinContent(i+1, fp1[i][j]->IntegralAndError(hbinlow,hbinhi,integrErr,"width")); hptClosure[j]->SetBinError(i+1, integrErr); } cout << "cent bin " << j << " pt bin " << i << " integral: " << ptClosure[j]->GetBinContent(i+1) << " error: "<< ptClosure[j]->GetBinError(i+1) << endl; cout << "cent bin " << j << " pt bin " << i << " gluon integral: " << gInteg << endl; cout << "cent bin " << j << " pt bin " << i << " quark integral: " << qInteg << endl; cout << "cent bin " << j << " pt bin " << i << " hallie integral: " << hptClosure[j]->GetBinContent(i+1) << endl; } } } TCanvas *c2 = new TCanvas("c2","",2000,400); c2->Divide(4,1); for(int j=0; j<4; j++){ c2->cd(4-j); //if(doSpillover) ptClosure[j] = ptClosureFit[j]; ptClosure[j]->SetMaximum(0.7); if(doSpillover) ptClosure[j]->SetMaximum(2.8); ptClosure[j]->SetMinimum(-0.2-1*(!doSpillover)); ptClosure[j]->SetXTitle("Track p_{T} (GeV/c)"); if(!doSpillover) ptClosure[j]->SetYTitle("JFF Correction"); else ptClosure[j]->SetYTitle("Spillover Correction"); //ptClosure[j]->Divide(qptClosure[j]); ptClosure[j]->Draw(); //ptClosureFit[j]->SetMarkerColor(2); //ptClosureFit[j]->SetLineColor(2); //if(doSpillover) ptClosureFit[j]->Draw(""); gptClosure[j]->SetMarkerColor(2); //gptClosure[j]->SetYTitle("New/Old JFF Corrections"); gptClosure[j]->SetXTitle("Track p_{T} (GeV/c)"); //gptClosure[j]->Add(ptClosure[j],-1); //gptClosure[j]->SetMaximum(0.4); //gptClosure[j]->SetMinimum(-0.4); gptClosure[j]->Draw("same"); qptClosure[j]->SetMarkerColor(4); //qptClosure[j]->Add(ptClosure[j],-1); qptClosure[j]->Draw("same"); hptClosure[j]->SetMarkerStyle(20); hptClosure[j]->SetMarkerColor(kMagenta+2); //hptClosure[j]->Draw("Same"); labels[j] = new TLatex(3,ptClosure[j]->GetMaximum()*0.75,Form("%s-%s",xCentBins[j].c_str(),xCentBins[j+1].c_str())); labels[j]->SetTextSize(0.06); labels[j]->Draw("same"); if(j==0){ cout << endl; for(int ibin=1; ibin<=qptClosure[j]->GetNbinsX(); ibin++){ cout << qptClosure[j]->GetBinContent(ibin) << ", "; } cout << endl; } } /*TFile *fout = new TFile("Spillover_gausFits.root","recreate"); fout->cd(); for(int j=0; j<4; j++){ for(int i=0; i<10; i++){ gausFit[i][j]->Write(); } } fout->Close();*/ }
void ratioPlots_Zxx() { // llbb_Mass_reco mfJetEta_450_600 mfJetEta_250_300 lljjMass_reco mjj_HighMass_reco drll_HighMass_reco TString Variable = "Zxx_Mass_reco"; // TString Variable2 = "Zbb_Mass_reco"; TString x_title = "M_{llxx}"; Int_t N_Rebin = 10; Double_t yTopLimit = 3; TFile *f1 = TFile::Open("/home/fynu/amertens/storage/test/MG_PY6_/output/MG_PY6_/MG_PY6v9.root"); TH1D *h1 = (TH1D*)f1->Get(Variable); h1->Sumw2(); // h1->Add((TH1D*)f1->Get(Variable2)); h1->SetDirectory(0); f1->Close(); TFile *f2 = TFile::Open("/home/fynu/amertens/storage/test/aMCNLO_PY8_/output/aMCNLO_PY8_/aMCNLO_PY8v9.root"); TH1D *h2 = (TH1D*)f2->Get(Variable); h2->Sumw2(); // h2->Add((TH1D*)f2->Get(Variable2)); h2->SetDirectory(0); f2->Close(); /* TFile *f3 = TFile::Open("/home/fynu/amertens/storage/test/MG_PY8_/output/MG_PY8_/MG_PY8.root"); TH1D *h3 = (TH1D*)f3->Get(Variable); h3->SetDirectory(0); f3->Close(); */ // h1->Sumw2(); // h2->Sumw2(); // h3->Sumw2(); cout << "MG_PY6 : " << h1->Integral() << endl; cout << "aMC@NLO_PY8 : " << h2->Integral() << endl; //h1->Scale(1.0/151456.0); //h2->Scale(1.0/1.45192e+09); //h2->Scale(1./12132.9); h1->Scale(1.0/h1->Integral()); h2->Scale(1.0/h2->Integral()); h1->Sumw2(); h2->Sumw2(); // h3->Scale(1.0/h3->Integral()); h1->Rebin(N_Rebin); h2->Rebin(N_Rebin); // h3->Rebin(N_Rebin); TH1D *h1c = h1->Clone(); h1c->Sumw2(); TH1D *h2c = h2->Clone(); h2c->Sumw2(); TH1D *h1c2 = h1->Clone(); h1c2->Sumw2(); h2c->Add(h1c,-1); h2c->Divide(h1c); h1->SetTitle(""); h2->SetTitle(""); // h3->SetTitle(""); h1->SetLineColor(kRed); // h3->SetLineColor(kGreen); TCanvas *c1 = new TCanvas("c1","example",600,700); TPad *pad1 = new TPad("pad1","pad1",0,0.5,1,1); pad1->SetBottomMargin(0); gStyle->SetOptStat(0); pad1->Draw(); pad1->cd(); h2->DrawCopy(); // h3->DrawCopy("same"); h1->GetYaxis()->SetLabelSize(0.1); h1->GetYaxis()->SetRangeUser(0, 0.2);// ,yTopLimit); h1->GetYaxis()->SetTitleSize(0.06); h1->GetYaxis()->SetTitleOffset(0.7); h1->Draw("same"); TLegend *leg = new TLegend(0.6,0.7,0.89,0.89); leg->SetLineColor(0); leg->SetFillColor(0); //leg->AddEntry(h1,"t#bar{t} uncertainty","f"); leg->AddEntry(h1,"MG5 + PY6","l"); leg->AddEntry(h2,"aMC@NLO + PY8","l"); // leg->AddEntry(h3,"MG5 + PY8","l"); leg->Draw(); c1->cd(); TPad *pad2 = new TPad("pad2","pad2",0,0,1,0.5); pad2->SetTopMargin(0); pad2->SetBottomMargin(0.4); pad2->Draw(); pad2->cd(); pad2->SetGrid(); h2->SetStats(0); h2->Divide(h1); //h2->SetMarkerStyle(21); h2->Draw("ep"); h2->GetYaxis()->SetLabelSize(0.1); h2->GetYaxis()->SetRangeUser(-0.5, 2.5);// ,yTopLimit); h2->GetYaxis()->SetTitle("aMC@NLO+PY8 / MG5+PY6"); h2->GetYaxis()->SetTitleSize(0.06); h2->GetYaxis()->SetTitleOffset(0.7); h2->GetXaxis()->SetLabelSize(0.1); h2->GetXaxis()->SetTitle(x_title); h2->GetXaxis()->SetTitleSize(0.16); h2->GetXaxis()->SetTitleOffset(0.9); // Double_t matrix[4][4]; h2->Fit("pol3","","",50.0,1200.0); TF1 *ratio = h2->GetFunction("pol3"); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); TMatrixD matrix(4,4,fitter->GetCovarianceMatrix()); Double_t errorPar00 = fitter->GetCovarianceMatrixElement(0,0); Double_t errorPar11 = fitter->GetCovarianceMatrixElement(1,1); Double_t errorPar22 = fitter->GetCovarianceMatrixElement(2,2); Double_t errorPar33 = fitter->GetCovarianceMatrixElement(3,3); // c1->cd(); matrix.Print(); //const TMatrixDSym m = matrix; const TMatrixDEigen eigen(matrix); const TMatrixD eigenVal = eigen.GetEigenValues(); const TMatrixD V = eigen.GetEigenVectors(); cout << "V" << endl; V.Print(); cout << "eigenVal" << endl; eigenVal.Print(); cout << "Recomputed diag" << endl; //const TMatrixD Vt(TMatrixD::kTransposed,V); //const TMatrixD Vinv = V.Invert(); const TMatrixD Vt(TMatrixD::kTransposed,V); //cout << "V-1" << endl; //Vinv.Print(); cout << "Vt" << endl; Vt.Print(); const TMatrixD VAVt = Vt*matrix*V; VAVt.Print(); const TVectorD FittedParam(4); FittedParam(0) = fitter->GetParameter(0); FittedParam(1) = fitter->GetParameter(1); FittedParam(2) = fitter->GetParameter(2); FittedParam(3) = fitter->GetParameter(3); FittedParam.Print(); //const TVectorD FittedParamNB(4); const TVectorD PNb = V*FittedParam; cout << "Pnb" << endl; PNb.Print(); cout << " Generating other parameters values " << endl; cout <<" V " << V(0,0) << endl; TRandom3 r; const TVectorD NewP(4); TH1D *hist100 = new TH1D("h100","h100",200,-5,5); TH1D *hist200 = new TH1D("h200","h200",200,-5,5); TH1D *hist400 = new TH1D("h400","h400",200,-5,5); TH1D *hist600 = new TH1D("h600","h600",100,-5,5); TH1D *hist800 = new TH1D("h800","h800",100,-5,5); TH1D *hist1000 = new TH1D("h1000","h1000",100,-5,5); TH1D *histp0 = new TH1D("p0","p0",100,-0.2,0.3); TH1D *histp1 = new TH1D("p1","p1",100,0.0,0.01); TH1D *histp2 = new TH1D("p2","p2",100,-0.00001,0); TH1D *histp3 = new TH1D("p3","p3",100,0,0.000000002); for (Int_t i = 0; i< 500; i++){ NewP(0) = r.Gaus(PNb(0),sqrt(eigenVal(0,0))); NewP(1) = r.Gaus(PNb(1),sqrt(eigenVal(1,1))); NewP(2) = r.Gaus(PNb(2),sqrt(eigenVal(2,2))); NewP(3) = r.Gaus(PNb(3),sqrt(eigenVal(3,3))); //NewP.Print(); //FittedParam.Print(); const TVectorD NewP2 = Vt*NewP; //NewP2.Print(); histp0->Fill(NewP2(0)); histp1->Fill(NewP2(1)); histp2->Fill(NewP2(2)); histp3->Fill(NewP2(3)); TF1 *newFit=new TF1("test","[0]+x*[1]+[2]*pow(x,2)+[3]*pow(x,3)",0,1400); newFit->SetParameters(NewP2(0),NewP2(1),NewP2(2),NewP2(3)); newFit->SetLineColor(kBlue); Double_t area=0; for(Int_t it=1; it < 16; it++){ //cout << "bin : " << it << " " << h1c2->GetBinContent(it) << endl; area += h1c2->GetBinContent(it)*newFit->Eval(100*it+50); } //newFit->Draw("same"); //cout <<"val: " << newFit->Eval(200) << endl; hist100->Fill(newFit->Eval(100)/area); hist200->Fill(newFit->Eval(200)/area); hist400->Fill(newFit->Eval(400)/area); hist600->Fill(newFit->Eval(600)/area); hist800->Fill(newFit->Eval(800)/area); hist1000->Fill(newFit->Eval(1000)/area); } c1->cd(); TCanvas *c2 = new TCanvas("c2","c2",1000,1000); c2->cd(); c2->Divide(3,2); c2->cd(1); hist100->Draw(); c2->cd(2); hist200->Draw(); c2->cd(3); hist400->Draw(); c2->cd(4); hist600->Draw(); c2->cd(5); hist800->Draw(); c2->cd(6); hist1000->Draw(); Double_t m_100,m_200,m_400,m_600,m_800,m_1000; Double_t s_100,s_200,s_400,s_600,s_800,s_1000; hist100->Fit("gaus","","",0.3,1.2); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_100 = fitter->GetParameter(1); s_100 = fitter->GetParameter(2); hist200->Fit("gaus","","",0.5,1.2); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_200 = fitter->GetParameter(1); s_200 = fitter->GetParameter(2); hist400->Fit("gaus","","",0.8,1.2); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_400 = fitter->GetParameter(1); s_400 = fitter->GetParameter(2); hist600->Fit("gaus","","",0.8,1.3); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_600 = fitter->GetParameter(1); s_600 = fitter->GetParameter(2); hist800->Fit("gaus","","",0.5,2); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_800 = fitter->GetParameter(1); s_800 = fitter->GetParameter(2); hist1000->Fit("gaus","","",0.5,2.5); TVirtualFitter *fitter = TVirtualFitter::GetFitter(); m_1000 = fitter->GetParameter(1); s_1000 = fitter->GetParameter(2); Double_t x[6],y[6],ym[6],yup[6],ydown[6]; x[0]=100; x[1]=200; x[2]=400;x[3]=600; x[4]=800; x[5]=1000; yup[0]=ratio->Eval(100)+s_100; yup[1]=ratio->Eval(200)+s_200; yup[2]=ratio->Eval(400)+s_400; yup[3]=ratio->Eval(600)+s_600; yup[4]=ratio->Eval(800)+s_800; yup[5]=ratio->Eval(1000)+s_1000; ydown[0]=ratio->Eval(100)-s_100; ydown[1]=ratio->Eval(200)-s_200; ydown[2]=ratio->Eval(400)-s_400; ydown[3]=ratio->Eval(600)-s_600; ydown[4]=ratio->Eval(800)-s_800; ydown[5]=ratio->Eval(1000)-s_1000; y[0]=1+s_100/ratio->Eval(100); y[1]=1+s_200/ratio->Eval(200); y[2]=1+s_400/ratio->Eval(400); y[3]=1+s_600/ratio->Eval(600); y[4]=1+s_800/ratio->Eval(800); y[5]=1+s_1000/ratio->Eval(1000); ym[0]=-s_100/m_100; ym[1]=-s_200/m_200; ym[2]=-s_400/m_400; ym[3]=-s_600/m_600; ym[4]=-s_800/m_800; ym[5]=-s_1000/m_1000; TGraph* g = new TGraph(6,x,y); TGraph* gm = new TGraph(6,x,ym); TGraph* gup = new TGraph(6,x,yup); TGraph* gdown = new TGraph(6,x,ydown); TCanvas *c3 = new TCanvas("c3","c3",1000,1000); c3->cd(); //gup->Draw("AC*"); //gdown->Draw("C*"); g->Draw("AC*"); gPad->SetBottomMargin(0.2); gPad->SetLeftMargin(0.2); gStyle->SetOptStat(0); g->GetXaxis()->SetTitle("M_{Zbb}"); g->GetXaxis()->SetRangeUser(50,1100); g->GetYaxis()->SetLabelSize(0.06); g->GetYaxis()->SetTitle("Uncertainty"); g->GetYaxis()->SetTitleSize(0.06); g->GetYaxis()->SetTitleOffset(1.4); g->GetXaxis()->SetLabelSize(0.06); g->GetXaxis()->SetTitleSize(0.06); g->GetXaxis()->SetTitleOffset(1); g->GetYaxis()->SetNdivisions(5); TFile f("syst_zxx.root","recreate"); g->Write(); f.Close(); //gm->Draw("C*"); //g->SetMaximum(1); //g->SetMinimum(-1); //h2c->Draw("same"); TH1D *h22=h2->Clone(); TCanvas *c5 = new TCanvas("c5","c5",1000,1000); gPad->SetBottomMargin(0.2); gPad->SetLeftMargin(0.2); gStyle->SetOptStat(0); h22->Draw(); h22->GetXaxis()->SetRangeUser(50,1100); h22->GetYaxis()->SetLabelSize(0.06); h22->GetYaxis()->SetTitleSize(0.06); h22->GetYaxis()->SetTitleOffset(1.4); h22->GetXaxis()->SetLabelSize(0.06); h22->GetXaxis()->SetTitleSize(0.06); h22->GetXaxis()->SetTitleOffset(1); ratio->SetLineColor(kRed); ratio->Draw("same"); gup->Draw("C"); gdown->Draw("C"); TLegend *leg = new TLegend(0.6,0.7,0.89,0.89); leg->SetLineColor(0); leg->SetFillColor(0); leg->AddEntry(h22,"aMC@NLO / MG5","lep"); leg->AddEntry(ratio,"best fit","l"); leg->AddEntry(gup,"Syst Error (#pm 1 #sigma)","l"); leg->Draw(); TCanvas *c4 = new TCanvas("c4","c4",1000,1000); c4->Divide(2,2); c4->cd(1); histp0->Draw(); c4->cd(2); histp1->Draw(); c4->cd(3); histp2->Draw(); c4->cd(4); histp3->Draw(); }
void Demo_TryExtrapolationInXT_Exp0_LogLogFits(Bool_t xt=kTRUE, Float_t expo=0.) { SetStyle(); gStyle->SetOptFile(0); gStyle->SetOptStat(0); gStyle->SetOptFit(0); xt=kTRUE; //define dummy histogram and some style parameters TH1F *dum; dum = new TH1F("dum","",160,5e-4,0.3); dum->SetMinimum(1e-14); dum->SetMaximum(1); dum->SetTitle(Form(";x_{T};#sqrt{s}^{%0.1f} E d^{3}#sigma/dp^{3}",expo)); dum->SetLineWidth(0); dum->SetStats(0); dum->GetXaxis()->CenterTitle(); dum->GetYaxis()->CenterTitle(); dum->GetXaxis()->SetTitleSize(0.05); dum->GetYaxis()->SetTitleSize(0.05); dum->GetXaxis()->SetTitleOffset(1.17); dum->GetYaxis()->SetTitleOffset(1.3); gROOT->LoadMacro("/net/hidsk0001/d00/scratch/krajczar/ppRefForpPb_PilotRun/interpolation_HIN10005_kk/data_table_to_graph.C"); //get 7 TeV points TGraphErrors *cms_7000_g = data_table_to_graph("cms",7000,xt,expo); cms_7000_g->SetMarkerColor(kBlack); TF1 *cms_7000_fit = new TF1("cms_7000_fit","[0]*pow(1.0+(x/[1]),[2])",10.*2./7000.,0.1);//Fit from 10 GeV/c cms_7000_fit->SetLineWidth(1); cms_7000_fit->SetParameters(3e22,2.5e-4,-7); cms_7000_g->Fit(cms_7000_fit,"REMW0"); //get 2.36 TeV points // TGraphErrors *cms_2360_g = data_table_to_graph("cms",2360,xt,expo); // cms_2360_g->SetMarkerColor(kMagenta+3); // TF1 *cms_2360_fit = new TF1("cms_2360_fit","[0]*pow(1.0+(x/[1]),[2])",2e-3,0.1); // cms_2360_fit->SetLineWidth(1); // cms_2360_fit->SetParameters(3e22,2.5e-4,-7); // cms_2360_g->Fit(cms_2360_fit,"REMW0"); //get 2.76 TeV points (KK using existing txt files) TGraphErrors *cms_2760_g = data_table_to_graph("cms",2760,xt,expo); cms_2760_g->SetMarkerColor(kMagenta+3); TF1 *cms_2760_fit = new TF1("cms_2760_fit","[0]*pow(1.0+(x/[1]),[2])",10.*2./2760.,0.1);//Fit from 10 GeV/c cms_2760_fit->SetLineColor(kMagenta+3); cms_2760_fit->SetLineWidth(1); cms_2760_fit->SetParameters(3e22,2.5e-4,-7); cms_2760_g->Fit(cms_2760_fit,"REMW0"); //get 1.96 TeV points TGraphErrors *cdf_1960_g = data_table_to_graph("cdf",1960,xt,expo); cdf_1960_g->SetMarkerColor(kOrange-3); cdf_1960_g->SetMarkerStyle(30); //TGraphErrors *cdfold_1960_g = data_table_to_graph("cdfold",1960,xt); //cdfold_1960_g->SetMarkerColor(kBlue); //cdfold_1960_g->SetMarkerStyle(30); TF1 *cdf_1960_fit = new TF1("cdf_1960_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./1960.,0.1);//Fit from 10 GeV/c cdf_1960_fit->SetLineColor(kOrange-3); cdf_1960_fit->SetLineWidth(1); cdf_1960_fit->SetParameters(3e22,2.5e-4,-7); cdf_1960_g->Fit(cdf_1960_fit,"REMW0"); //get 1.8 TeV points TGraphErrors *cdf_1800_g = data_table_to_graph("cdf",1800,xt,expo); cdf_1800_g->SetMarkerColor(kGreen+3); cdf_1800_g->SetMarkerStyle(28); TF1 *cdf_1800_fit = new TF1("cdf_1800_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./1800.,0.1);//Fit from 10 GeV/c cdf_1800_fit->SetLineColor(kGreen+3); cdf_1800_fit->SetLineWidth(1); cdf_1800_fit->SetParameters(3e22,2.5e-4,-7.2); cdf_1800_fit->FixParameter(2,-7.2); cdf_1800_g->Fit(cdf_1800_fit,"REMW0"); //get 0.9 TeV points TGraphErrors *cms_900_g = data_table_to_graph("cms",900,xt,expo); cms_900_g->SetMarkerColor(kRed); TF1 *cms_900_fit = new TF1("cms_900_fit","[0]*pow(1.0+(x/[1]),[2])",2.*10./900.,0.01);//Fit from 10 GeV/c cms_900_fit->SetLineColor(kRed); cms_900_fit->SetLineWidth(1); cms_900_fit->SetParameters(3e22,2.5e-4,-7); cms_900_g->Fit(cms_900_fit,"REMW0"); // TGraphErrors *ua1_900_g = data_table_to_graph("ua1",900,xt,expo); // ua1_900_g->SetMarkerColor(kCyan+1); // ua1_900_g->SetMarkerStyle(26); // get 0.63 TeV points TGraphErrors *cdf_630_g = data_table_to_graph("cdf",630,xt,expo); cdf_630_g->SetMarkerColor(kOrange+3); cdf_630_g->SetMarkerStyle(27); //draw graphs to canvas TCanvas *c1 = new TCanvas("c1","spectra interpolation",600,600); dum->Draw(); //Fits are already drawn, no draw the points on top of the fits cdf_1960_g->Draw("pz"); //cdfold_1960_g->Draw("pz"); // cdf_1800_g->Draw("pz"); // if(!xt) ua1_900_g->Draw("pz"); // abs(eta) within 2.5 changes high xt behavior // cdf_630_g->Draw("pz"); cms_900_g->Draw("pz"); // draw the CMS points on top // cms_2360_g->Draw("pz"); cms_2760_g->Draw("pz"); //KK cms_7000_g->Draw("pz"); //make legend TLegend *leg1 = new TLegend(0.2,0.21,0.50,0.51,"p+p(#bar{p})"); leg1->SetBorderSize(0); leg1->SetFillStyle(1); leg1->SetFillColor(0); leg1->AddEntry(cms_7000_g,"7 TeV (CMS)","lp"); leg1->AddEntry(cms_2760_g,"2.76 TeV (CMS)","lp"); // leg1->AddEntry(cms_2360_g,"2.36 TeV (CMS)","lp"); leg1->AddEntry(cdf_1960_g,"1.96 TeV (CDF)","lp"); // leg1->AddEntry(cdf_1800_g,"1.8 TeV (CDF)","lp"); leg1->AddEntry(cms_900_g,"0.9 TeV (CMS)","lp"); // if(!xt) leg1->AddEntry(ua1_900_g,"0.9 TeV (UA1) |#eta|<2.5","lp"); // leg1->AddEntry(cdf_630_g,"0.63 TeV (CDF)","lp"); leg1->Draw(); gPad->SetLogy(); //if(xt) gPad->SetLogx(); gPad->SetLogx(); cms_7000_fit->Draw("same"); cms_2760_fit->Draw("same"); cdf_1960_fit->Draw("same"); // cdf_1800_fit->Draw("same"); cms_900_fit->Draw("same"); TCanvas *c3 = new TCanvas("c3","Individual xT fits, residuals",600,500); TH1F *hratio = new TH1F("hratio",";x_{T};ratio",160,0.0003,0.07); //was 0.003-0.04 hratio->SetMaximum(2.0); hratio->SetMinimum(0.0); hratio->SetStats(0); hratio->Draw(); TGraphErrors* ratio_cdf_1960_g = divide_graph_by_function(cdf_1960_g,cdf_1960_fit); ratio_cdf_1960_g->SetName("ratio_cdf_1960_g"); ratio_cdf_1960_g->SetLineColor(kOrange-9); ratio_cdf_1960_g->SetMarkerSize(0.9); ratio_cdf_1960_g->Draw("samepz"); TF1 *fit1960 = new TF1("fit1960","[0]+[1]*log(x)+[2]/x/x",0.001,0.035); fit1960->SetLineWidth(2); fit1960->SetLineColor(kOrange-3); ratio_cdf_1960_g->Fit(fit1960,"REMW"); fit1960->Draw("same"); // TGraphErrors* ratio_cdf_1800_g = divide_graph_by_function(cdf_1800_g,cdf_1800_fit); // ratio_cdf_1800_g->Draw("samepz"); // TGraphErrors* ratio_cdf_630_g = divide_graph_by_function(cdf_630_g,merge_fit); //ratio_cdf_630_g->Draw("pz"); TGraphErrors* ratio_cms_7000_g = divide_graph_by_function(cms_7000_g,cms_7000_fit); ratio_cms_7000_g->SetName("ratio_cms_7000_g"); ratio_cms_7000_g->Draw("samepz"); TF1 *fit7000 = new TF1("fit7000","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.001,0.1); fit7000->SetLineWidth(2); ratio_cms_7000_g->Fit(fit7000,"REMW"); TGraphErrors* ratio_cms_2760_g = divide_graph_by_function(cms_2760_g,cms_2760_fit); ratio_cms_2760_g->SetName("ratio_cms_2760_g"); ratio_cms_2760_g->SetLineColor(kMagenta+3); ratio_cms_2760_g->Draw("samepz"); TF1 *fit2760 = new TF1("fit2760","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.001,0.1); fit2760->SetLineWidth(2); fit2760->SetLineColor(kMagenta+3); ratio_cms_2760_g->Fit(fit2760,"REM");//REMW TGraphErrors* ratio_cms_900_g = divide_graph_by_function(cms_900_g,cms_900_fit); ratio_cms_900_g->SetName("ratio_cms_900_g"); ratio_cms_900_g->Draw("samepz"); TF1 *fit900 = new TF1("fit900","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.007,0.1); fit900->SetParameters(5.61766e-01,5.24904e+01,-2.27817e+03,3.43955e+04); fit900->SetLineWidth(2); fit900->SetLineColor(2); ratio_cms_900_g->Fit(fit900,"REM");//REMW ratio_cms_900_g->SetLineColor(kRed); TGaxis *A1 = new TGaxis(0.0003,7.0,0.07,7.0,2510*0.0003,2510*0.07,410,"-"); A1->SetTitle("p_{T} for #sqrt{s}=5.02 TeV"); A1->Draw(); //Real fit should be the fit*resid TH1D *h900 = new TH1D("h900","900 GeV fitted spectra;x_{T}",30400,0.005,0.05); h900->SetLineColor(kRed); TH1D *h1960 = new TH1D("h1960","1.96 TeV fitted spectra;x_{T}",30400,0.005,0.05); h1960->SetLineColor(kOrange-3); TH1D *h7000 = new TH1D("h7000","7 TeV fitted spectra;x_{T}",30400,0.005,0.05); TH1D *h1800 = new TH1D("h1800","1.8 TeV fitted spectra;x_{T}",30400,0.005,0.05); h1800->SetLineColor(kGreen+3); TH1D *h630 = new TH1D("h630","0.63 TeV fitted spectra;x_{T}",30400,0.005,0.05); h630->SetLineColor(kOrange+3); TH1D *h2760_EdTxt = new TH1D("h2760_EdTxt","2.76 TeV fitted spectra;x_{T}",30400,0.005,0.05); h2760_EdTxt->SetLineColor(kMagenta+3); for(int hbin=1; hbin<=30400; hbin++) { float xtbin = h900->GetBinCenter(hbin); h900->SetBinContent(hbin,cms_900_fit->Eval(xtbin)*fit900->Eval(xtbin)); h1960->SetBinContent(hbin,cdf_1960_fit->Eval(xtbin)*fit1960->Eval(xtbin)); h7000->SetBinContent(hbin,cms_7000_fit->Eval(xtbin)*fit7000->Eval(xtbin)); h2760_EdTxt->SetBinContent(hbin,cms_2760_fit->Eval(xtbin)*fit2760->Eval(xtbin)); } TCanvas *c5 = new TCanvas("c5","final x_{T} fits",600,500); TH1D* dumDirectInt = new TH1D("dumDirectInt","Final fits; x_{T} (GeV/c)",120,5e-4,0.3); dumDirectInt->SetMaximum(1); dumDirectInt->SetMinimum(1e-14); dumDirectInt->GetXaxis()->SetRangeUser(0.5,120.); dumDirectInt->SetStats(0); dumDirectInt->GetYaxis()->SetTitle("Ed^{3}#sigma/dp^{3}"); dumDirectInt->Draw(); h900->Draw("same"); h1960->Draw("same"); h7000->Draw("same"); h2760_EdTxt->Draw("same"); gPad->SetLogy(); gPad->SetLogx(); // inspect direct interpolations TCanvas *c6 = new TCanvas("c6","interpolations",600,500); c6->Divide(3,4); float s[6]; float xs[6]; float es[6]={0.0,0.0,0.0,0.0,0.0,0.0}; float exs[6]; TGraphErrors *gXS[12]; float s_log[6]; float xs_log[6]; float es_log[6]={0.0,0.0,0.0,0.0,0.0,0.0}; float exs_log[6]; TGraphErrors *gXS_log[12]; //KK test TGraphErrors *gXS_log_lemma[12]; //KK test float s1[1]={2.76}; float xs1[1]; float ex1[1]={0.0}; float ey1[1]; TGraphErrors *gXS1[12]; float s1_5020[1]={5.02}; float xs1_5020[1]; float ex1_5020[1]={0.0}; float ey1_5020[1]; TGraphErrors *gXS1_5020[12]; float s2[1]={2.76}; float xs2[1]; float ex2[1]={0.0}; float ey2[1]; TGraphErrors *gXS2[12]; float s2_5020[1]={5.02}; float xs2_5020[1]; float ex2_5020[1]={0.0}; float ey2_5020[1]; TGraphErrors *gXS2_5020[12]; float s900[1]={0.9}; float xs900[1]; float ex900[1]={0.0}; float ey900[1]; TGraphErrors *gXS900[12]; float s1960[1]={1.96}; float xs1960[1]; float ex1960[1]={0.0}; float ey1960[1]; TGraphErrors *gXS1960[12]; float s2760[1]={2.76}; float xs2760[1]; float ex2760[1]={0.0}; float ey2760[1]; TGraphErrors *gXS2760[12]; float s7000[1]={7.0}; float xs7000[1]; float ex7000[1]={0.0}; float ey7000[1]; TGraphErrors *gXS7000[12]; TF1 *fitXS[12]; TH1F *dumXS[12]; TF1 *fitXS_log[12]; float xtbins[12]={0.0051,0.007,0.01,0.015,0.02,0.025,0.03,0.035,0.04,0.042,0.045,0.049}; //2pT/sqrt(s) = xT ==>> xT=0.0051 -> pT=12.8 GeV/c; xT=0.049 -> pT=123 GeV/c //errors TMVA::TSpline1 *err_cms_900_xt = errors_from_graph(cms_900_g,0.115); TMVA::TSpline1 *err_cms_2760_xt = errors_from_graph(cms_2760_g,0.11); TMVA::TSpline1 *err_cms_7000_xt = errors_from_graph(cms_7000_g,0.04); TMVA::TSpline1 *err_cdf_1960_xt = errors_from_graph(cdf_1960_g,0.06); for(Int_t ipt=0; ipt<=11; ipt++) { c6->cd(ipt+1); int npoints=0; xs[npoints]=h900->GetBinContent(h900->FindBin(xtbins[ipt])); s[npoints]=0.9; exs[npoints]=err_cms_900_xt->Eval(xtbins[ipt])*xs[npoints]; xs900[0]=xs[npoints]; ey900[0]=exs[npoints]; xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints]))); npoints++; xs[npoints]=h1960->GetBinContent(h1960->FindBin(xtbins[ipt])); s[npoints]=1.96; exs[npoints]=err_cdf_1960_xt->Eval(xtbins[ipt])*xs[npoints]; xs1960[0]=xs[npoints]; ey1960[0]=exs[npoints]; xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints]))); npoints++; xs[npoints]=h2760_EdTxt->GetBinContent(h2760_EdTxt->FindBin(xtbins[ipt])); s[npoints]=2.76; exs[npoints]=err_cms_2760_xt->Eval(xtbins[ipt])*xs[npoints]; xs2760[0]=xs[npoints]; ey2760[0]=exs[npoints]; xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints]))); npoints++; xs[npoints]=h7000->GetBinContent(h7000->FindBin(xtbins[ipt])); s[npoints]=7.0; exs[npoints]=err_cms_7000_xt->Eval(xtbins[ipt])*xs[npoints]; xs7000[0]=xs[npoints]; ey7000[0]=exs[npoints]; xs_log[npoints]=log10(xs[npoints]); s_log[npoints]=log10(s[npoints]); exs_log[npoints]=TMath::Max(fabs(log10(xs[npoints]-exs[npoints])-log10(xs[npoints])),fabs(log10(xs[npoints]+exs[npoints])-log10(xs[npoints]))); npoints++; dumXS[ipt] = new TH1F(Form("dumXS%d",ipt),Form("p_{T} = %0.0f GeV/c;#sqrt{s} [TeV]",xtbins[ipt]),100,0,20); dumXS[ipt]->SetMinimum(0.25*xs[npoints-1]); dumXS[ipt]->SetMaximum(4.0*xs[0]); dumXS[ipt]->SetStats(0); dumXS[ipt]->GetXaxis()->SetRangeUser(0.5,10.0); dumXS[ipt]->GetXaxis()->CenterTitle(); dumXS[ipt]->GetYaxis()->CenterTitle(); dumXS[ipt]->GetYaxis()->SetTitle("Ed#sigma^{3}/dp^{3}"); dumXS[ipt]->GetXaxis()->SetTitleSize(0.10); dumXS[ipt]->GetYaxis()->SetTitleSize(0.10); dumXS[ipt]->GetYaxis()->SetLabelSize(0.10); dumXS[ipt]->GetXaxis()->SetLabelSize(0.10); dumXS[ipt]->GetXaxis()->SetTitleOffset(0.6); dumXS[ipt]->GetYaxis()->SetTitleOffset(0.8); dumXS[ipt]->Draw(); gPad->SetLogy(); gPad->SetLogx(); std::cerr<< "npoints: " << npoints << std::endl; gXS[ipt] = new TGraphErrors(npoints,s,xs,es,exs); gXS[ipt]->SetName(Form("gXS%d",ipt)); gXS[ipt]->SetMarkerStyle(20); gXS_log[ipt] = new TGraphErrors(npoints,s_log,xs_log,es_log,exs_log); gXS_log[ipt]->SetName(Form("gXS_log%d",ipt)); gXS900[ipt] = new TGraphErrors(1,s900,xs900,ex900,ey900); gXS900[ipt]->SetName(Form("gXS900_%d",ipt)); gXS900[ipt]->SetMarkerStyle(20); gXS900[ipt]->SetMarkerColor(kRed); gXS900[ipt]->Draw("pz"); gXS1960[ipt] = new TGraphErrors(1,s1960,xs1960,ex1960,ey1960); gXS1960[ipt]->SetName(Form("gXS1960_%d",ipt)); gXS1960[ipt]->SetMarkerStyle(30); gXS1960[ipt]->SetMarkerColor(kOrange-3); gXS1960[ipt]->Draw("pz"); gXS2760[ipt] = new TGraphErrors(1,s2760,xs2760,ex2760,ey2760); gXS2760[ipt]->SetName(Form("gXS2760_%d",ipt)); gXS2760[ipt]->SetMarkerStyle(20); gXS2760[ipt]->SetMarkerColor(kMagenta+3); gXS2760[ipt]->Draw("pz"); gXS7000[ipt] = new TGraphErrors(1,s7000,xs7000,ex7000,ey7000); gXS7000[ipt]->SetName(Form("gXS7000_%d",ipt)); gXS7000[ipt]->SetMarkerStyle(20); gXS7000[ipt]->SetMarkerColor(kBlack); gXS7000[ipt]->Draw("pz"); fitXS_log[ipt] = new TF1(Form("fitXS_log%d",ipt),"pol2",-0.52288,0.85733); gXS_log[ipt]->Fit(fitXS_log[ipt], "REM0"); //"REMW"); // full covariance errors on fit TVirtualFitter *fitter = TVirtualFitter::GetFitter(); TMatrixD matrix(3,3,fitter->GetCovarianceMatrix()); Double_t e00 = fitter->GetCovarianceMatrixElement(0,0); Double_t e11 = fitter->GetCovarianceMatrixElement(1,1); Double_t e22 = fitter->GetCovarianceMatrixElement(2,2); Double_t e01 = fitter->GetCovarianceMatrixElement(0,1); Double_t e02 = fitter->GetCovarianceMatrixElement(0,2); Double_t e12 = fitter->GetCovarianceMatrixElement(1,2); //Due to properties of the covariance matrix: Double_t e10 = e01; Double_t e20 = e02; Double_t e21 = e12; gXS_log_lemma[ipt] = new TGraphErrors(); gXS_log_lemma[ipt]->SetName(Form("gXS_log_lemma%d",ipt)); int kkk = 0; for(int kk = log10(0.8*s[0])*10000.; kk <= log10(1.3*s[npoints-1])*10000.; kk++) { float kk_lemma = kk/10000.; float value = fitXS_log[ipt]->Eval(kk_lemma); gXS_log_lemma[ipt]->SetPoint(kkk,TMath::Power(10,kk_lemma),TMath::Power(10,value)); kkk++; } gXS_log_lemma[ipt]->SetLineColor(2); gXS_log_lemma[ipt]->Draw("same"); cout << "cov(0,0) = " << e00 << "\ncov(1,1) = " << e11 << "\ncov(2,2) = " << e22 << "\ncov(0,1) = " << e01 << "\ncov(0,2) = " << e02 << "\ncov(1,2) = " << e12 << endl; //0.7007 = log10(5.02) Double_t fullerr2 = e00 + e11*0.7007*0.7007 + e22*0.7007*0.7007*0.7007*0.7007 + 2*e01*0.7007 + 2*e02*0.7007*0.7007 + 2*e12*0.7007*0.7007*0.7007; //Plan (1.,0.7007,0.7007^2)(COV)(1.,0.7007,0.7007^2): Double_t where = 0.7007; Double_t fullerr2_alternative = e00 + 2.*e01*where + 2.*e02*where*where + 2.*e12*where*where*where + e11*where*where + e22*where*where*where*where; cout << "full covariance error = " << TMath::Sqrt(fullerr2) << endl; cout << "full covariance error alternative: = " << TMath::Sqrt(fullerr2_alternative) << endl; float error_in_percentage = 100.*(TMath::Power(10,TMath::Sqrt(fullerr2))-1.); cout << " on " << fitXS_log[ipt]->Eval(0.7007) << std::endl; cout << " error in percentage: " << error_in_percentage << std::endl; //5020 xs2_5020[0] = TMath::Power(10,fitXS_log[ipt]->Eval(0.7007)); ey2_5020[0] = error_in_percentage*0.01*xs2_5020[0]; gXS2_5020[ipt] = new TGraphErrors(1,s2_5020,xs2_5020,ex2_5020,ey2_5020); gXS2_5020[ipt]->SetName(Form("gXS2_5020_%d",ipt)); gXS2_5020[ipt]->SetMarkerColor(7); gXS2_5020[ipt]->SetLineColor(7); gXS2_5020[ipt]->SetMarkerStyle(kOpenSquare); gXS2_5020[ipt]->Draw("pz"); } }