static void addBindings(MultinameHashtable* bindings, TraitsBindingsp tb, uint32_t flags) { if (!tb) return; if ((flags & TypeDescriber::HIDE_OBJECT) && !tb->base) return; addBindings(bindings, tb->base, flags); for (int32_t index = 0; (index = tb->next(index)) != 0; ) { bindings->add(tb->keyAt(index), tb->nsAt(index), tb->valueAt(index)); } }
ArrayObject *DomainObject::getVariables (Atom a) { ArrayObject *result = toplevel()->arrayClass->newArray(0); TraitsBindingsp traits = getTraits(a)->getTraitsBindings(); int i = 0; while ((i = traits->next(i)) != 0) { Namespace *ns = traits->nsAt(i); Stringp name = traits->keyAt(i); Binding b = traits->valueAt(i); if (core()->isVarBinding(b) && ns->getType() == Namespace::NS_Public) { Atom nameAtom = core()->internString(name)->atom(); result->push(&nameAtom, 1); } } return result; }
ScriptObject* TypeDescriber::describeTraits(Traitsp traits, uint32_t flags) { if (!(flags & INCLUDE_TRAITS)) return NULL; AvmCore* core = m_toplevel->core(); GC* gc = core->GetGC(); TraitsBindingsp tb = traits->getTraitsBindings(); TraitsMetadatap tm = traits->getTraitsMetadata(); ScriptObject* o = new_object(); ArrayObject* bases = NULL; ArrayObject* metadata = NULL; ArrayObject* interfaces = NULL; ArrayObject* methods = NULL; ArrayObject* accessors = NULL; ArrayObject* variables = NULL; ScriptObject* constructor = NULL; if (flags & INCLUDE_BASES) { metadata = new_array(); PoolObject* class_mdpool; const uint8_t* class_md = tm->getMetadataPos(class_mdpool); if (class_md) addDescribeMetadata(metadata, class_mdpool, class_md); } if (flags & INCLUDE_BASES) { bases = new_array(); for (Traitsp b = traits->base; b; b = b->base) pushstr(bases, describeClassName(b)); } if (flags & INCLUDE_INTERFACES) { interfaces = new_array(); // our TraitsBindings only includes our own interfaces, not any we might have inherited, // so walk the tree. there might be redundant interfaces listed in the inheritance, // so use a list to remove dupes List<Traitsp> unique(gc); for (Traitsp b = traits; b; b = b->base) { TraitsBindingsp tbi = b->getTraitsBindings(); for (uint32_t i = 0; i < tbi->interfaceCapacity; ++i) { Traitsp ti = tbi->getInterface(i); if (ti && ti->isInterface && unique.indexOf(ti) < 0) { unique.add(ti); pushstr(interfaces, describeClassName(ti)); } } } } // constructor if (flags & INCLUDE_CONSTRUCTOR) { AbstractFunction* initMethod = traits->init; if (initMethod && initMethod->param_count) { constructor = describeParams(initMethod); } } if (flags & (INCLUDE_ACCESSORS | INCLUDE_METHODS | INCLUDE_VARIABLES)) { // recover slot/method metadata and method-declarer information. // make a flattened set of bindings so we don't have to check for overrides as we go. // This is not terribly efficient, but doesn't need to be. MultinameHashtable* mybind = new (gc) MultinameHashtable(); addBindings(mybind, tb, flags); // Don't want interface methods, so post-process and wipe out any // bindings that were added for (uint32_t i = 0; i < tb->interfaceCapacity; ++i) { Traitsp ti = tb->getInterface(i); if (ti && ti->isInterface) { TraitsBindingsp tbi = ti->getTraitsBindings(); for (int32_t index = 0; (index = tbi->next(index)) != 0; ) { Stringp name = tbi->keyAt(index); Namespacep ns = tbi->nsAt(index); mybind->add(name, ns, BIND_NONE); } } } // yuck, replicate buggy behavior in FP9/10 List<Namespacep> nsremoval(gc); if (flags & HIDE_NSURI_METHODS) { for (uint32_t i = 0; i < tb->interfaceCapacity; ++i) { Traitsp ti = tb->getInterface(i); // already did interfaces, don't need to do them again if (ti && !ti->isInterface) { TraitsBindingsp tbi = ti->getTraitsBindings(); for (int32_t index = 0; (index = tbi->next(index)) != 0; ) { Namespacep ns = tbi->nsAt(index); if (ns->getURI()->length() > 0 && nsremoval.indexOf(ns) < 0) nsremoval.add(ns); } } } } for (int32_t index = 0; (index = mybind->next(index)) != 0; ) { Binding binding = mybind->valueAt(index); Stringp name = mybind->keyAt(index); Namespacep ns = mybind->nsAt(index); Stringp nsuri = ns->getURI(); TraitsMetadata::MetadataPtr md1 = NULL; TraitsMetadata::MetadataPtr md2 = NULL; PoolObject* md1pool = NULL; PoolObject* md2pool = NULL; // We only display public members -- exposing private namespaces could compromise security. if (ns->getType() != Namespace::NS_Public) continue; if ((flags & HIDE_NSURI_METHODS) && nsremoval.indexOf(ns) >= 0) continue; ScriptObject* v = new_object(); const BindingKind bk = AvmCore::bindingKind(binding); switch (bk) { case BKIND_CONST: case BKIND_VAR: { if (!(flags & INCLUDE_VARIABLES)) continue; const uint32_t slotID = AvmCore::bindingToSlotId(binding); const KVPair props[] = { { kstrid_access, strAtom(str(bk == BKIND_CONST ? kstrid_readonly : kstrid_readwrite)) }, { kstrid_type, strAtom(describeClassName(tb->getSlotTraits(slotID))) }, }; setpropmulti(v, props, elem_count(props)); if (!variables) variables = new_array(); pushobj(variables, v); md1 = tm->getSlotMetadataPos(slotID, md1pool); break; } case BKIND_METHOD: { if (!(flags & INCLUDE_METHODS)) continue; const uint32_t methodID = AvmCore::bindingToMethodId(binding); const AbstractFunction* af = tb->getMethod(methodID); Traitsp declaringTraits = af->declaringTraits; const KVPair props[] = { { kstrid_declaredBy, strAtom(describeClassName(declaringTraits)) }, { kstrid_returnType, strAtom(describeClassName(af->returnTraits())) }, { kstrid_parameters, objAtom(describeParams(af)) }, }; setpropmulti(v, props, elem_count(props)); if (!methods) methods = new_array(); pushobj(methods, v); md1 = tm->getMethodMetadataPos(methodID, md1pool); break; } case BKIND_GET: case BKIND_SET: case BKIND_GETSET: { if (!(flags & INCLUDE_ACCESSORS)) continue; const uint32_t methodID = AvmCore::hasGetterBinding(binding) ? AvmCore::bindingToGetterId(binding) : AvmCore::bindingToSetterId(binding); const AbstractFunction* af = tb->getMethod(methodID); Traitsp declaringTraits = af->declaringTraits; Traitsp accessorType = AvmCore::hasGetterBinding(binding) ? af->returnTraits() : af->paramTraits(1); static const uint8_t bk2str[8] = { uint8_t(kstrid_emptyString), // BKIND_NONE uint8_t(kstrid_emptyString), // BKIND_METHOD uint8_t(kstrid_emptyString), // BKIND_VAR uint8_t(kstrid_emptyString), // BKIND_CONST uint8_t(kstrid_emptyString), // BKIND_ITRAMP uint8_t(kstrid_readonly), // BKIND_GET uint8_t(kstrid_writeonly), // BKIND_SET uint8_t(kstrid_readwrite) // BKIND_GETSET }; const KVPair props[] = { { kstrid_declaredBy, strAtom(describeClassName(declaringTraits)) }, { kstrid_access, strAtom(str(StringId(bk2str[bk]))) }, { kstrid_type, strAtom(describeClassName(accessorType)) }, }; setpropmulti(v, props, elem_count(props)); if (AvmCore::hasGetterBinding(binding)) md1 = tm->getMethodMetadataPos(AvmCore::bindingToGetterId(binding), md1pool); if (AvmCore::hasSetterBinding(binding)) md2 = tm->getMethodMetadataPos(AvmCore::bindingToSetterId(binding), md2pool); if (!accessors) accessors = new_array(); pushobj(accessors, v); break; } case BKIND_NONE: break; } ArrayObject* vm = NULL; if ((flags & INCLUDE_METADATA) && (md1 || md2)) { vm = new_array(); addDescribeMetadata(vm, md1pool, md1); addDescribeMetadata(vm, md2pool, md2); } const KVPair props[] = { { kstrid_name, strAtom(name) }, { kstrid_uri, strAtom(nsuri->length() == 0 ? NULL : nsuri) }, { kstrid_metadata, objAtom(vm) }, }; setpropmulti(v, props, elem_count(props)); } } const KVPair props[] = { { kstrid_bases, objAtom(bases) }, { kstrid_interfaces, objAtom(interfaces) }, { kstrid_metadata, objAtom(metadata) }, { kstrid_accessors, objAtom(accessors) }, { kstrid_methods, objAtom(methods) }, { kstrid_variables, objAtom(variables) }, { kstrid_constructor, objAtom(constructor) }, }; setpropmulti(o, props, elem_count(props)); return o; }