bool TrackballTransformManipulator::rotate() { if ( ( getCurrentX() != getLastX() ) || ( getCurrentY() != getLastY() ) ) { DP_ASSERT( getViewState()->getCamera().isPtrTo<FrustumCamera>() ); TransformSharedPtr transform = m_transformPath->getTail().staticCast<Transform>(); FrustumCameraSharedPtr const& camera = getViewState()->getCamera().staticCast<FrustumCamera>(); if ( camera && transform ) { unsigned int rtWidth = getRenderTarget()->getWidth(); unsigned int rtHeight = getRenderTarget()->getHeight(); Vec2f camWinSize = camera->getWindowSize(); if ( ( 0 < rtHeight ) && ( 0 < rtWidth ) && ( FLT_EPSILON < fabs( camWinSize[0] ) ) && ( FLT_EPSILON < fabs( camWinSize[1] ) ) ) { // get all the matrices needed here Mat44f m2w, w2m, w2v, v2w, v2s, m2v; m_transformPath->getModelToWorldMatrix( m2w, w2m ); // model->world and world->model w2v = camera->getWorldToViewMatrix(); // world->view v2w = camera->getViewToWorldMatrix(); // view->world v2s = camera->getProjection(); // view->screen (normalized) m2v = m2w * w2v; const Sphere3f& bs = transform->getBoundingSphere(); // center of the object in view coordinates Vec4f centerV = Vec4f( bs.getCenter(), 1.0f ) * m2v; DP_ASSERT( fabs( centerV[3] - 1.0f ) < FLT_EPSILON ); // center of the object in normalized screen coordinates Vec4f centerNS = centerV * v2s; DP_ASSERT( centerNS[3] != 0.0f ); centerNS /= centerNS[3]; // center of the object in screen space Vec2f centerS( rtWidth * ( 1 + centerNS[0] ) / 2, rtHeight * ( 1 - centerNS[1] ) / 2 ); // move the input points relative to the center // move the input points absolutely //Vec2f last( m_orbitCursor ); Vec2f last( getLastCursorPosition() ); Vec2f p0( last[0] - centerS[0], centerS[1] - last[1] ); Vec2f p1( getCurrentX() - centerS[0], centerS[1] - getCurrentY() ); DP_ASSERT( p0[0] != p1[0] || p0[1] != p1[1] ); // get the scaling (from model to view) Vec3f scaling, translation; Quatf orientation, scaleOrientation; decompose( m2v, translation, orientation, scaling, scaleOrientation ); float maxScale = std::max( scaling[0], std::max( scaling[1], scaling[2] ) ); DP_ASSERT( FLT_EPSILON < fabs( maxScale ) ); // determine the radius in screen space (in the centers depth) Vec2f centerWindowSize = - centerV[2] / getViewState()->getTargetDistance() * camWinSize; float radius = bs.getRadius() * maxScale * rtWidth / centerWindowSize[0]; // with p0, p1, and the radius determine the axis and angle of rotation via the Trackball utility // => axis is in view space then Vec3f axis; float angle; m_trackball.setSize( radius ); m_trackball.apply( p0, p1, axis, angle ); float dx = p1[0]-p0[0]; float dy = p1[1]-p0[1]; checkLockAxis(dx, dy); if ( m_activeLockAxis[static_cast<size_t>(Axis::X)] ) { if ( dx < 0 ) axis = Vec3f(0.f, -1.f, 0.f); else if ( dx > 0) axis = Vec3f(0.f, 1.f, 0.f); else return false; } else if ( m_activeLockAxis[static_cast<size_t>(Axis::Y)] ) { if ( dy < 0 ) axis = Vec3f(1.f, 0.f, 0.f); else if ( dy > 0) axis = Vec3f(-1.f, 0.f, 0.f); else return false; } // transform axis back into model space axis = Vec3f( Vec4f( axis, 0.0f ) * v2w * w2m ); axis.normalize(); // create the rotation around the center (in model space) Trafo trafo; trafo.setCenter( bs.getCenter() ); trafo.setOrientation( Quatf( axis, angle ) ); // concatenate this rotation with the current transformation trafo.setMatrix( transform->getTrafo().getMatrix() * trafo.getMatrix() ); // concatenate this rotation with the original transformation //trafo.setMatrix( m_matrix * trafo.getMatrix() ); // set the current transform transform->setTrafo( trafo ); return true; } } } return false; }
bool TrackballTransformManipulator::pan() { int dxScreen = getCurrentX() - getLastX(); int dyScreen = getLastY() - getCurrentY(); if ( dxScreen || dyScreen ) { DP_ASSERT( getViewState()->getCamera().isPtrTo<FrustumCamera>() ); TransformSharedPtr transform = m_transformPath->getTail().staticCast<Transform>(); FrustumCameraSharedPtr const& camera = getViewState()->getCamera().staticCast<FrustumCamera>(); if ( camera && transform ) { unsigned int rtWidth = getRenderTarget()->getWidth(); unsigned int rtHeight = getRenderTarget()->getHeight(); Vec2f camWinSize = camera->getWindowSize(); if ( ( 0 < rtHeight ) && ( 0 < rtWidth ) && ( FLT_EPSILON < fabs( camWinSize[0] ) ) && ( FLT_EPSILON < fabs( camWinSize[1] ) ) ) { // get all the matrices needed here Mat44f m2w, w2m; m_transformPath->getModelToWorldMatrix(m2w, w2m); // model->world and world->model Mat44f w2v = camera->getWorldToViewMatrix(); // world->view Mat44f v2w = camera->getViewToWorldMatrix(); // view->world // center of the object in view coordinates Vec4f center = Vec4f( transform->getBoundingSphere().getCenter(), 1.0f ) * m2w * w2v; // window size at distance of the center of the object Vec2f centerWindowSize = - center[2] / getViewState()->getTargetDistance() * camWinSize; checkLockAxis(dxScreen, dyScreen); if ( m_activeLockAxis[static_cast<size_t>(Axis::X)] ) { if ( dxScreen != 0 ) { dyScreen = 0; } else { return false; } } else if ( m_activeLockAxis[static_cast<size_t>(Axis::Y)] ) { if ( dyScreen != 0) { dxScreen = 0; } else { return false; } } // delta in model coordinates Vec4f viewCenter( centerWindowSize[0] * dxScreen / rtWidth , centerWindowSize[1] * dyScreen / rtHeight, 0.f, 0.f ); Vec4f modelDelta = viewCenter * v2w * w2m; // add the delta to the translation of the transform Trafo trafo = transform->getTrafo(); trafo.setTranslation( trafo.getTranslation() + Vec3f( modelDelta ) ); transform->setTrafo( trafo ); return true; } } } return false; }