// Read the ITG3200 Gyroscope void Read_Gyro() { // Point to the first data register I2C->beginTransmission(GyroAddress); I2C->write(0x1B); // point to the first data register I2C->endTransmission(); // read 8 byte, from address 4 (Data Registers) I2C->beginTransmission(GyroAddress); I2C->requestFrom(GyroAddress, 8); if (I2C->available() >= 8) { //Just confirming that the data order is Temp, X, Y, Z Gyro_T = (I2C->read() * 256) + I2C->read(); // Temp MSB * 256 + Temp LSB Gyro_X = (I2C->read() * 256) + I2C->read(); // X axis MSB * 256 + X axis LSB Gyro_Y = (I2C->read() * 256) + I2C->read(); // Y axis MSB * 256 + Y axis LSB Gyro_Z = (I2C->read() * 256) + I2C->read(); // Z axis MSB * 256 + Z axis LSB } // Incorrent number of returned bytes else { Serial.println("Recieving incorrect amount of bytes from Gyroscope"); while(I2C->available()) { Serial.print("data byte = "); Serial.println(I2C->read(), DEC); //print the returned number as a decimal } } I2C->endTransmission(); }
unsigned int MCP342X::readADC() { delay(80); unsigned int t; Wire1.requestFrom(I2C_ADDRESS, (byte) 3); byte h = Wire1.read(); byte l = Wire1.read(); byte r = Wire1.read(); t = (h << 8) | l; return t; }
static void read16(byte reg, uint16_t *value) { Wire1.beginTransmission((uint8_t)BMP085_ADDRESS); #if ARDUINO >= 100 Wire1.write((uint8_t)reg); #else Wire1.send(reg); #endif Wire1.endTransmission(); Wire1.requestFrom((uint8_t)BMP085_ADDRESS, (byte)2); #if ARDUINO >= 100 *value = (Wire1.read() << 8) | Wire1.read(); #else *value = (Wire1.receive() << 8) | Wire1.receive(); #endif Wire1.endTransmission(); }
int PCF8574::i2cRead(uint8_t value){ Wire1.requestFrom((uint8_t )PCFaddress, (uint8_t )1); if (Wire1.available()) PCFPORTA = (int) Wire1.read(); else PCFPORTA = (int)value; //error condition //return value; return PCFPORTA; }
/** Read multiple bytes from an 8-bit device register. * @param useSPI true : use SPI * @param devAddr I2C slave device address * @param regAddr First register regAddr to read from * @param length Number of bytes to read * @param data Buffer to store read data in * @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) * @return Number of bytes read (0 indicates failure) */ int8_t I2Cdev::readBytes(bool useSPI, uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data, uint16_t timeout) { #ifdef I2CDEV_SERIAL_DEBUG Serial.print(useSPI ? "SPI (0x" : "I2C 0x"); Serial.print(devAddr, HEX); Serial.print(") reading "); Serial.print(length, DEC); Serial.print(" bytes from 0x"); Serial.print(regAddr, HEX); Serial.print("..."); #endif int8_t count = 0; // I2C if (!useSPI) { Wire.beginTransmission(devAddr); #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) Wire.send(regAddr); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) Wire.write(regAddr); #endif Wire.endTransmission(); Wire.beginTransmission(devAddr); Wire.requestFrom(devAddr, length); uint32_t t1 = millis(); for (; Wire.available() && (timeout == 0 || millis() - t1 < timeout); count++) { #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) data[count] = Wire.receive(); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) data[count] = Wire.read(); #endif #ifdef I2CDEV_SERIAL_DEBUG Serial.print(data[count], HEX); if (count + 1 < length) Serial.print(" "); #endif } if (timeout > 0 && millis() - t1 >= timeout && count < length) count = -1; // timeout Wire.endTransmission(); } else { digitalWrite(devAddr, LOW); byte Addr = regAddr | 0x80; SPI.transfer(Addr); for (uint8_t cnt=0; cnt < length; cnt++) { data[cnt] = SPI.transfer(0); count++; } digitalWrite(devAddr, HIGH); } #ifdef I2CDEV_SERIAL_DEBUG Serial.print(". Done ("); Serial.print(count, DEC); Serial.println(" read)."); #endif return count; }
// Read the ADXL345 Accelerometer void Read_Accel() { I2C->beginTransmission(AccelAddress); // start transmission to device I2C->write(0x32); // point to the first data register DATAX0 I2C->endTransmission(); // end transmission // read 6 byte, from address 32 (Data Registers) I2C->beginTransmission(AccelAddress); // start transmission to device I2C->requestFrom(AccelAddress, 6); if (I2C->available() >= 6) { Accel_X = I2C->read() + (I2C->read() * 256); // X axis LSB + X axis MSB * 256 Accel_Y = I2C->read() + (I2C->read() * 256); // Y axis LSB + Y axis MSB * 256 Accel_Z = I2C->read() + (I2C->read() * 256); // Z axis LSB + Z axis MSB * 256 } // Incorrent number of returned bytes else { Serial.println("Recieving incorrect amount of bytes from Accelerometer"); while(I2C->available()) { Serial.print("data byte = "); Serial.println(I2C->read(), DEC); //print the returned number as a decimal } } I2C->endTransmission(); }
/** Read multiple bytes from an 8-bit device register. * @param devAddr I2C slave device address * @param regAddr First register regAddr to read from * @param length Number of bytes to read * @param data Buffer to store read data in * @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) * @return Number of bytes read (0 indicates failure) */ int8_t I2Cdev::readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data, uint16_t timeout) { #ifdef I2CDEV_SERIAL_DEBUG Serial.print("I2C (0x"); Serial.print(devAddr, HEX); Serial.print(") reading "); Serial.print(length, DEC); Serial.print(" bytes from 0x"); Serial.print(regAddr, HEX); Serial.print("..."); #endif int8_t count = 0; Wire.beginTransmission(devAddr); #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) Wire.send(regAddr); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) Wire.write(regAddr); #endif Wire.endTransmission(); Wire.beginTransmission(devAddr); Wire.requestFrom(devAddr, length); uint32_t t1 = millis(); for (; Wire.available() && (timeout == 0 || millis() - t1 < timeout); count++) { #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) data[count] = Wire.receive(); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) data[count] = Wire.read(); #endif #ifdef I2CDEV_SERIAL_DEBUG Serial.print(data[count], HEX); if (count + 1 < length) Serial.print(" "); #endif } if (timeout > 0 && millis() - t1 >= timeout && count < length) count = -1; // timeout Wire.endTransmission(); #ifdef I2CDEV_SERIAL_DEBUG Serial.print(". Done ("); Serial.print(count, DEC); Serial.println(" read)."); #endif return count; }
/** Read multiple words from a 16-bit device register. * @param useSPI true : use SPI * @param devAddr I2C slave device address or Slave Select pin if SPI * @param regAddr First register regAddr to read from * @param length Number of words to read * @param data Buffer to store read data in * @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) * @return Number of words read (0 indicates failure) */ int8_t I2Cdev::readWords(bool useSPI, uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data, uint16_t timeout) { #ifdef I2CDEV_SERIAL_DEBUG Serial.print(useSPI ? "SPI (0x" : "I2C (0x"); Serial.print(devAddr, HEX); Serial.print(") reading "); Serial.print(length, DEC); Serial.print(" words from 0x"); Serial.print(regAddr, HEX); Serial.print("..."); #endif int8_t count = 0; Wire.beginTransmission(devAddr); #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) Wire.send(regAddr); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) Wire.write(regAddr); #endif if (!useSPI) { Wire.endTransmission(); Wire.beginTransmission(devAddr); Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes uint32_t t1 = millis(); bool msb = true; // starts with MSB, then LSB for (; Wire.available() && count < length && (timeout == 0 || millis() - t1 < timeout);) { if (msb) { // first byte is bits 15-8 (MSb=15) #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) data[count] = Wire.receive() << 8; #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) data[count] = Wire.read() << 8; #endif } else { // second byte is bits 7-0 (LSb=0) #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) data[count] |= Wire.receive(); #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) data[count] |= Wire.read(); #endif #ifdef I2CDEV_SERIAL_DEBUG Serial.print(data[count], HEX); if (count + 1 < length) Serial.print(" "); #endif count++; } msb = !msb; } if (timeout > 0 && millis() - t1 >= timeout && count < length) count = -1; // timeout Wire.endTransmission(); } else { uint8_t _byteCnt = (uint8_t)(length * 2); byte Addr = regAddr | 0x80; digitalWrite(devAddr, LOW); SPI.transfer(Addr); bool msb = true; for (uint8_t cnt=0; cnt < _byteCnt; cnt++) { if (msb) { data[cnt] = SPI.transfer(0) << 8; } else { data[cnt] |= SPI.transfer(0); #ifdef I2CDEV_SERIAL_DEBUG Serial.print(data[count], HEX); if (count + 1 < length) Serial.print(" "); #endif count++; } msb = !msb; } digitalWrite(devAddr, HIGH); } #ifdef I2CDEV_SERIAL_DEBUG Serial.print(". Done ("); Serial.print(count, DEC); Serial.println(" read)."); #endif return count; }
void PCF8574::i2cRead(){ uint8_t value = 0x00; Wire1.requestFrom((uint8_t )PCFaddress, (uint8_t )1); if (Wire1.available()) PCFPORTA = (int) Wire1.read(); else PCFPORTA = (int)value; //error condition }
// Read the HMC5883L Compass void Read_Compass() { // Point to the first data register I2C->beginTransmission(CompassAddress); I2C->write(0x03); // point to the first data register I2C->endTransmission(); // read 6 byte, from address 3 (Data Registers) I2C->beginTransmission(CompassAddress); I2C->requestFrom(CompassAddress, 6); if (I2C->available() >= 6) { //Just confirming that the data register order is X Z Y (ie NOT X Y Z) Compass_Raw_X = (I2C->read() * 256) + I2C->read(); // X axis MSB * 256 + X axis LSB Compass_Raw_Z = (I2C->read() * 256) + I2C->read(); // Z axis MSB * 256 + Z axis LSB Compass_Raw_Y = (I2C->read() * 256) + I2C->read(); // Y axis MSB * 256 + Y axis LSB } // Incorrent number of returned bytes else { Serial.println("Recieving incorrect amount of bytes from Compass"); while(I2C->available()) { Serial.print("data byte = "); Serial.println(I2C->read(), DEC); //print the returned number as a decimal } } I2C->endTransmission(); // Scale the Raw readings based on the sensor scale (Gauss = 1.3 & Scale = 0.92) Compass_Raw_X *= 0.92; Compass_Raw_Y *= 0.92; Compass_Raw_Z *= 0.92; // Update the Max Min limit readings if (Compass_Raw_X > Compass_Max_X) Compass_Max_X = Compass_Raw_X; if (Compass_Raw_X < Compass_Min_X) Compass_Min_X = Compass_Raw_X; if (Compass_Raw_Y > Compass_Max_Y) Compass_Max_Y = Compass_Raw_Y; if (Compass_Raw_Y < Compass_Min_Y) Compass_Min_Y = Compass_Raw_Y; if (Compass_Raw_Z > Compass_Max_Z) Compass_Max_Z = Compass_Raw_Z; if (Compass_Raw_Z < Compass_Min_Z) Compass_Min_Z = Compass_Raw_Z; // Update the offset Compass_Offset_X = (Compass_Max_X + Compass_Min_X) / 2; Compass_Offset_Y = (Compass_Max_Y + Compass_Min_Y) / 2; Compass_Offset_Z = (Compass_Max_Z + Compass_Min_Z) / 2; // Calculate calibrated readings Compass_Calib_X = Compass_Raw_X - Compass_Offset_X; Compass_Calib_Y = Compass_Raw_Y - Compass_Offset_Y; Compass_Calib_Z = Compass_Raw_Z - Compass_Offset_Z; //--- Calculate the X Y plane heading --- // Calculate heading (radians) using the X, Y plane - Assuming magnetometer is level Compass_Heading = atan2(Compass_Calib_Y, Compass_Calib_X); // Adjust with Declination error (magnetic north vs true north) Compass_Heading += Compass_Declination_Angle; // Correct for when signs are reversed. if(Compass_Heading < 0) Compass_Heading += 2*PI; // Check for wrap due to addition of declination. if(Compass_Heading > 2*PI) Compass_Heading -= 2*PI; // Convert radians to degrees for readability. Compass_Heading *= 180/M_PI; //--- Calculate the X Z plane heading --- // Calculate heading (radians) using the X, Z plane Compass_Heading_XZ = atan2(Compass_Calib_Z, Compass_Calib_X); // Adjust with Declination error (magnetic north vs true north) Compass_Heading_XZ += Compass_Declination_Angle; // Correct for when signs are reversed. if(Compass_Heading_XZ < 0) Compass_Heading_XZ += 2*PI; // Check for wrap due to addition of declination. if(Compass_Heading_XZ > 2*PI) Compass_Heading_XZ -= 2*PI; // Convert radians to degrees for readability. Compass_Heading_XZ *= 180/M_PI; //--- Calculate the Y Z plane heading --- // Calculate heading (radians) using the Y, Z plane Compass_Heading_YZ = atan2(Compass_Calib_Z, Compass_Calib_Y); // Adjust with Declination error (magnetic north vs true north) Compass_Heading_YZ += Compass_Declination_Angle; // Correct for when signs are reversed. if(Compass_Heading_YZ < 0) Compass_Heading_YZ += 2*PI; // Check for wrap due to addition of declination. if(Compass_Heading_YZ > 2*PI) Compass_Heading_YZ -= 2*PI; // Convert radians to degrees for readability. Compass_Heading_YZ *= 180/M_PI; }
static bool NunchuckReadData(TwoWire& interface, NunchuckData& data) { interface.requestFrom(0x52, 6); data.jX = interface.read(); data.jY = interface.read(); data.accX = interface.read(); data.accY = interface.read(); data.accZ = interface.read(); data.buttons = interface.read(); data.accZ<<=2; data.accZ|=data.buttons>>6; data.accY<<=2; data.accY|=(data.buttons>>4)&0x3; data.accX<<=2; data.accX|=(data.buttons>>2)&0x3; data.buttons&=0x3; SERIAL_PORT_MONITOR.print("Joy : "); SERIAL_PORT_MONITOR.print(data.jX); SERIAL_PORT_MONITOR.print(", "); SERIAL_PORT_MONITOR.print(data.jY); SERIAL_PORT_MONITOR.print("\tAcc : "); SERIAL_PORT_MONITOR.print(data.accX); SERIAL_PORT_MONITOR.print(", "); SERIAL_PORT_MONITOR.print(data.accY); SERIAL_PORT_MONITOR.print(", "); SERIAL_PORT_MONITOR.print(data.accZ); SERIAL_PORT_MONITOR.print("\tBtn : "); SERIAL_PORT_MONITOR.print(" ["); SERIAL_PORT_MONITOR.print(data.buttons); SERIAL_PORT_MONITOR.print("] "); switch(data.buttons) { case 0x0ul: SERIAL_PORT_MONITOR.println("C + Z"); break; case 0x1ul: SERIAL_PORT_MONITOR.println("C"); break; case 0x2ul: SERIAL_PORT_MONITOR.println("Z"); break; case 0x3ul: SERIAL_PORT_MONITOR.println("No key"); break; default: break; } interface.beginTransmission(0x52);// transmit to device 0x52 interface.write((uint8_t)0x00);// sends a zero. interface.endTransmission();// stop transmitting return 1; }