コード例 #1
0
ファイル: newmatnl.cpp プロジェクト: 151706061/sofa
void NonLinearLeastSquares::MakeCovariance()
{
   if (Covariance.Nrows()==0)
   {
      UpperTriangularMatrix UI = U.i();
      Covariance << UI * UI.t() * errorvar;
      SE << Covariance;                 // get diagonals
      for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i));
   }
}
コード例 #2
0
// produces the Cholesky decomposition of A - x.t() * x where A = chol.t() * chol
void downdate_Cholesky(UpperTriangularMatrix &chol, RowVector x)
{
   int nRC = chol.Nrows();
	
   // solve R^T a = x
   LowerTriangularMatrix L = chol.t();
   ColumnVector a(nRC); a = 0.0;
   int i, j;
	
   for (i = 1; i <= nRC; ++i)
   {
      // accumulate subtr sum
      Real subtrsum = 0.0;
      for(int k = 1; k < i; ++k) subtrsum += a(k) * L(i,k);

      a(i) = (x(i) - subtrsum) / L(i,i);
   }

   // test that l2 norm of a is < 1
   Real squareNormA = a.SumSquare();
   if (squareNormA >= 1.0)
      Throw(ProgramException("downdate_Cholesky() fails", chol));

   Real alpha = sqrt(1.0 - squareNormA);

   // compute and apply Givens rotations to the vector a
   ColumnVector cGivens(nRC);  cGivens = 0.0;
   ColumnVector sGivens(nRC);  sGivens = 0.0;
   for(i = nRC; i >= 1; i--)
      alpha = pythag(alpha, a(i), cGivens(i), sGivens(i));

   // apply Givens rotations to the jth column of chol
   ColumnVector xtilde(nRC); xtilde = 0.0;
   for(j = nRC; j >= 1; j--)
   {
      // only the first j rotations have an affect on chol,0
      for(int k = j; k >= 1; k--)
         GivensRotation(cGivens(k), -sGivens(k), chol(k,j), xtilde(j));
   }
}
コード例 #3
0
ファイル: example.cpp プロジェクト: 151706061/sofa
void test4(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 4 - QR triangularisation\n";

   // QR triangularisation method
 
   // load data - 1s into col 1 of matrix
   int npred1 = npred+1;
   Matrix X(nobs,npred1); ColumnVector Y(nobs);
   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;

   // do Householder triangularisation
   // no need to deal with constant term separately
   Matrix X1 = X;                 // Want copy of matrix
   ColumnVector Y1 = Y;
   UpperTriangularMatrix U; ColumnVector M;
   QRZ(X1, U); QRZ(X1, Y1, M);    // Y1 now contains resids
   ColumnVector A = U.i() * M;
   ColumnVector Fitted = X * A;
   Real ResVar = Y1.SumSquare() / (nobs-npred1);

   // get variances of estimates
   U = U.i(); DiagonalMatrix D; D << U * U.t();

   // Get diagonals of Hat matrix
   DiagonalMatrix Hat;  Hat << X1 * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) << 
      (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn());
   cout << "\n\n";
}