コード例 #1
0
ファイル: intersection.hpp プロジェクト: Peiffert/CGoGN
bool interLineSeg(const VEC3& A, const VEC3& AB, typename VEC3::DATA_TYPE AB2,
				  const VEC3& P, const VEC3& Q, VEC3& inter)
{
#define EPSILON (1.0e-5)
	typedef typename VEC3::DATA_TYPE T ;

	T dist = Geom::distancePoint2TrianglePlane(AB-A,A,P,Q);

//	std::cout << "dist "<<  dist << std::endl;

	if (dist>EPSILON)
		return false;

	VEC3 AP = P - A ;
	VEC3 PQ = Q - P ;
	T X = AB * PQ ;
	T beta = ( AB2 * (AP*PQ) - X * (AP*AB) ) / ( X*X - AB2 * PQ.norm2() ) ;

//	std::cout << "beta "<<  beta << std::endl;

	if ((beta<0.0) || (beta>1.0))
		return false;

	inter = beta*Q +(1.0-beta)*P;
	return true;
#undef EPSILON
}
コード例 #2
0
ファイル: intersection.hpp プロジェクト: Peiffert/CGoGN
Intersection intersectionLineTriangle(const VEC3& P, const VEC3& Dir, const VEC3& Ta, const VEC3& Tb, const VEC3& Tc, VEC3& Inter)
{
	typedef typename VEC3::DATA_TYPE T ;

	VEC3 u = Tb - Ta ;
	VEC3 v = Tc - Ta ;
	VEC3 n = u ^ v ;

	VEC3 w0 = P - Ta ;
    T a = -(n * w0) ;
    T b = (n * Dir) ;

#define PRECISION 1e-20
    if(fabs(b) < PRECISION)			//ray parallel to triangle
			return NO_INTERSECTION ;
#undef PRECISION

	T r = a / b ;
	Inter = P + r * Dir ;			// intersect point of ray and plane

    // is I inside T?
	T uu = u.norm2() ;
	T uv = u * v ;
	T vv = v.norm2() ;
	VEC3 w = Inter - Ta ;
	T wu = w * u ;
	T wv = w * v ;
	T D = (uv * uv) - (uu * vv) ;

    // get and test parametric coords
	T s = ((uv * wv) - (vv * wu)) / D ;
	if(s < T(0) || s > T(1))
		return NO_INTERSECTION ;
	T t = ((uv * wu) - (uu * wv)) / D ;
	if(t < T(0) || (s + t) > T(1))
        return NO_INTERSECTION ;

	if((s == T(0) || s == T(1)))
		if(t == T(0) || t == T(1))
			return VERTEX_INTERSECTION ;
		else
			return EDGE_INTERSECTION ;
	else if(t == T(0) || t == T(1))
			return EDGE_INTERSECTION ;

    return FACE_INTERSECTION ;
}
コード例 #3
0
ファイル: intersection.hpp プロジェクト: abletterer/CGoGN-1
bool intersectionSphereEdge(typename PFP::MAP& map, const typename PFP::VEC3& center, typename PFP::REAL radius, Edge e, const VertexAttribute<typename PFP::VEC3, typename PFP::MAP>& position, typename PFP::REAL& alpha)
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

	const VEC3& p1 = position[e.dart];
	const VEC3& p2 = position[map.phi1(e.dart)];
	if(Geom::isPointInSphere(p1, center, radius) && !Geom::isPointInSphere(p2, center, radius))
	{
		VEC3 p = p1 - center;
		VEC3 qminusp = p2 - center - p;
		REAL s = p * qminusp;
		REAL n2 = qminusp.norm2();
		alpha = (- s + sqrt(s*s + n2 * (radius*radius - p.norm2()))) / n2;
		return true ;
	}
	return false ;
}
コード例 #4
0
ファイル: intersection.hpp プロジェクト: Peiffert/CGoGN
Intersection intersectionSegmentTriangle(const VEC3& PA, const VEC3& PB, const VEC3& Ta, const VEC3& Tb, const VEC3& Tc, VEC3& Inter)
{
	typedef typename VEC3::DATA_TYPE T ;
	const T precision = 0.0001;//std::numeric_limits<T>::min();

	VEC3 u = Tb - Ta ;
	VEC3 v = Tc - Ta ;
	VEC3 Dir = PB - PA ;

	VEC3 n = u ^ v ;

	VEC3 w0 = PA - Ta ;
    float a = -(n * w0) ;
    float b = (n * Dir) ;

    if(fabs(b) < precision)			//ray parallel to triangle
		return NO_INTERSECTION ;

	//compute intersection
	T r = a / b ;

	if((r < -precision) || (r > (T(1) + precision)))
		return NO_INTERSECTION;

	Inter = PA + r * Dir;			// intersect point of ray and plane

    // is I inside T?
	T uu = u.norm2() ;
	T uv = u * v ;
	T vv = v.norm2() ;
	VEC3 w = Inter - Ta ;
	T wu = w * u ;
	T wv = w * v ;
	T D = (uv * uv) - (uu * vv) ;

    // get and test parametric coords
	T s = ((uv * wv) - (vv * wu)) / D ;

	if(s <= precision)
		s = 0.0f;

	if(s < T(0) || s > T(1))
		return NO_INTERSECTION ;

	T t = ((uv * wu) - (uu * wv)) / D ;

	if(t <= precision)
		t = 0.0f;

	if(t < T(0) || (s + t) > T(1))
        return NO_INTERSECTION ;

	if((s == T(0) || s == T(1)))
		if(t == T(0) || t == T(1))
			return VERTEX_INTERSECTION ;
		else
			return EDGE_INTERSECTION ;
	else if(t == T(0) || t == T(1))
			return EDGE_INTERSECTION ;

    return FACE_INTERSECTION ;
}