Factor LC::NewPancake (size_t i, size_t _I, bool & hasNaNs) { size_t I = nbV(i)[_I]; Factor piet = _pancakes[i]; // recalculate _pancake[i] VarSet Ivars = factor(I).vars(); Factor A_I; for( VarSet::const_iterator k = Ivars.begin(); k != Ivars.end(); k++ ) if( var(i) != *k ) A_I *= (_pancakes[findVar(*k)] * factor(I).inverse()).marginal( Ivars / var(i), false ); if( Ivars.size() > 1 ) A_I ^= (1.0 / (Ivars.size() - 1)); Factor A_Ii = (_pancakes[i] * factor(I).inverse() * _phis[i][_I].inverse()).marginal( Ivars / var(i), false ); Factor quot = A_I / A_Ii; if( props.damping != 0.0 ) quot = (quot^(1.0 - props.damping)) * (_phis[i][_I]^props.damping); piet *= quot / _phis[i][_I].normalized(); _phis[i][_I] = quot.normalized(); piet.normalize(); if( piet.hasNaNs() ) { cerr << name() << "::NewPancake(" << i << ", " << _I << "): has NaNs!" << endl; hasNaNs = true; } return piet; }
void ParityAggrLit::index(Grounder *g, Groundable *gr, VarSet &bound) { (void)g; if(assign_) { VarSet vars; VarVec bind; lower_->vars(vars); std::set_difference(vars.begin(), vars.end(), bound.begin(), bound.end(), std::back_insert_iterator<VarVec>(bind)); if(bind.size() > 0) { bound.insert(bind.begin(), bind.end()); return; } } gr->instantiator()->append(new MatchIndex(this)); }
Index *IncLit::index(Grounder *, Formula *, VarSet &bound) { VarSet vars; VarVec bind; var_->vars(vars); std::set_difference(vars.begin(), vars.end(), bound.begin(), bound.end(), std::back_insert_iterator<VarVec>(bind)); bound.insert(bind.begin(), bind.end()); return new IncIndex(this); }
Factor LC::belief (const VarSet &ns) const { if( ns.size() == 0 ) return Factor(); else if( ns.size() == 1 ) return beliefV( findVar( *(ns.begin()) ) ); else { DAI_THROW(BELIEF_NOT_AVAILABLE); return Factor(); } }
void findLoopClusters( const FactorGraph & fg, std::set<VarSet> &allcl, VarSet newcl, const Var & root, size_t length, VarSet vars ) { for( VarSet::const_iterator in = vars.begin(); in != vars.end(); in++ ) { VarSet ind = fg.delta( *in ); if( (newcl.size()) >= 2 && ind.contains( root ) ) { allcl.insert( newcl | *in ); } else if( length > 1 ) findLoopClusters( fg, allcl, newcl | *in, root, length - 1, ind / newcl ); } }
Factor ExactInf::belief( const VarSet &ns ) const { if( ns.size() == 0 ) return Factor(); else if( ns.size() == 1 ) { return beliefV( findVar( *(ns.begin()) ) ); } else { size_t I; for( I = 0; I < nrFactors(); I++ ) if( factor(I).vars() >> ns ) break; if( I == nrFactors() ) DAI_THROW(BELIEF_NOT_AVAILABLE); return beliefF(I).marginal(ns); } }
std::vector<std::map<size_t, int> > AnyPositionCnfCompress::createCounts(size_t &gndFactor, VarSet &superVarSet) { // create zero entries for each position map<long, map<size_t, int> > countMap; foreach (const dai::BipartiteGraph::Neighbor &tmpVar, _cfg.nbF(gndFactor)) { Var liftedVar = _varRepr[_varColorVec[tmpVar]]; size_t pos = find(_cfg.factor(gndFactor).sigma().begin(), _cfg.factor(gndFactor).sigma().end(), tmpVar.iter) - _cfg.factor(gndFactor).sigma().begin(); countMap[liftedVar.label()][pos] = 0; } vector<map<size_t, int> > counts; size_t posCount; size_t negCount; for (vector<Var>::const_iterator iter = superVarSet.begin(); iter < superVarSet.end(); iter++) { posCount = 0; negCount = 0; foreach(const dai::BipartiteGraph::Neighbor tmpFac, _cfg.nbV(_cfg.findVar(*iter))) { if (_facRepr[_facColorVec[tmpFac]] == gndFactor) { size_t pos = find(_cfg.factor(tmpFac).sigma().begin(), _cfg.factor(tmpFac).sigma().end(), tmpFac.dual) - _cfg.factor(tmpFac).sigma().begin(); double res = log(_cfg.factor(tmpFac).states() - _zeroStates[tmpFac]) / log(2); size_t nrPosLiterals = size_t(res); bool sign = (pos < nrPosLiterals); if (sign) { posCount++; } else { negCount++; } } } map<size_t, int>::iterator posIter=countMap[iter->label()].begin(); if (posCount > 0) { posIter->second = posCount; } if (negCount > 0) { for (size_t j=0;j<posCount; j++, posIter++) {} posIter->second = negCount; } counts.push_back(countMap[iter->label()]); } return counts; }
std::vector<std::map<size_t, int> > CompressInterface::createCounts(size_t &gndFactor, VarSet &superVarSet) { // create zero entries for each position map<long, map<size_t, int> > countMap; foreach (const dai::BipartiteGraph::Neighbor &tmpVar, _cfg.nbF(gndFactor)) { Var liftedVar = _varRepr[_varColorVec[tmpVar]]; size_t pos = find(_cfg.factor(gndFactor).sigma().begin(), _cfg.factor(gndFactor).sigma().end(), tmpVar.iter) - _cfg.factor(gndFactor).sigma().begin(); countMap[liftedVar.label()][pos] = 0; } vector<map<size_t, int> > counts; for (vector<Var>::const_iterator iter = superVarSet.begin(); iter < superVarSet.end(); iter++) { foreach(const dai::BipartiteGraph::Neighbor gndFac, _cfg.nbV(_cfg.findVar(*iter))) { if (_facRepr[_facColorVec[gndFac]] == gndFactor) { size_t pos = find(_cfg.factor(gndFac).sigma().begin(), _cfg.factor(gndFac).sigma().end(), gndFac.dual) - _cfg.factor(gndFac).sigma().begin(); countMap[iter->label()][pos]++; } } counts.push_back(countMap[iter->label()]); } return counts; }
/* Convert cell vector of Matlab sets to vector<VarSet> */ vector<VarSet> mx2VarSets(const mxArray *vs, const FactorGraph &fg, long verbose, vector<Permute> &perms) { vector<VarSet> varsets; int n1 = mxGetM(vs); int n2 = mxGetN(vs); if( n2 != 1 && n1 != 1 ) mexErrMsgTxt("varsets should be a Nx1 or 1xN cell matrix."); size_t nr_vs = n1; if( n1 == 1 ) nr_vs = n2; // interpret vs, linear cell array of varsets varsets.reserve( nr_vs ); perms.clear(); perms.reserve( nr_vs ); for( size_t cellind = 0; cellind < nr_vs; cellind++ ) { if( verbose >= 3 ) cerr << "reading varset " << cellind << ": " << endl; mxArray *cell = mxGetCell(vs, cellind); if( verbose >= 3 ) cerr << " got cell " << endl; size_t nr_mem = mxGetN(cell); if( verbose >= 3 ) cerr << " number members: " << nr_mem << endl; double *members = mxGetPr(cell); if( verbose >= 3 ) cerr << " got them! " << endl; // add variables VarSet vsvars; if( verbose >= 3 ) cerr << " vars: "; vector<long> labels(nr_mem,0); vector<size_t> dims(nr_mem,0); for( size_t mi = 0; mi < nr_mem; mi++ ) { labels[mi] = (long)members[mi]; dims[mi] = fg.var(labels[mi]).states(); if( verbose >= 3 ) cerr << labels[mi] << " "; vsvars.insert( fg.var(labels[mi]) ); } if( verbose >= 3 ) cerr << endl; DAI_ASSERT( nr_mem == vsvars.size() ); varsets.push_back(vsvars); // calculate permutation matrix vector<size_t> perm(nr_mem,0); VarSet::iterator j = vsvars.begin(); for( size_t mi = 0; mi < nr_mem; mi++,j++ ) { long gezocht = j->label(); vector<long>::iterator piet = find(labels.begin(),labels.end(),gezocht); perm[mi] = piet - labels.begin(); } if( verbose >= 3 ) { cerr << endl << " perm: "; for( vector<size_t>::iterator r=perm.begin(); r!=perm.end(); r++ ) cerr << *r << " "; cerr << endl; } // create Permute object vector<size_t> di(nr_mem,0); size_t prod = 1; for( size_t k = 0; k < nr_mem; k++ ) { di[k] = dims[k]; prod *= dims[k]; } Permute permindex( di, perm ); perms.push_back( permindex ); } if( verbose >= 3 ) { for(vector<VarSet>::const_iterator I=varsets.begin(); I!=varsets.end(); I++ ) cerr << *I << endl; } return( varsets ); }
int main( int argc, char *argv[] ) { if( argc != 3 ) { cout << "Usage: " << argv[0] << " <in.fg> <tw>" << endl << endl; cout << "Reports some characteristics of the .fg network." << endl; cout << "Also calculates treewidth (which may take some time) unless <tw> == 0." << endl; return 1; } else { // Read factorgraph FactorGraph fg; char *infile = argv[1]; int calc_tw = atoi(argv[2]); fg.ReadFromFile( infile ); cout << "Number of variables: " << fg.nrVars() << endl; cout << "Number of factors: " << fg.nrFactors() << endl; cout << "Connected: " << fg.isConnected() << endl; cout << "Tree: " << fg.isTree() << endl; cout << "Has short loops: " << hasShortLoops(fg.factors()) << endl; cout << "Has negatives: " << hasNegatives(fg.factors()) << endl; cout << "Binary variables? " << fg.isBinary() << endl; cout << "Pairwise interactions? " << fg.isPairwise() << endl; if( calc_tw ) { std::pair<size_t,size_t> tw = treewidth(fg); cout << "Treewidth: " << tw.first << endl; cout << "Largest cluster for JTree has " << tw.second << " states " << endl; } double stsp = 1.0; for( size_t i = 0; i < fg.nrVars(); i++ ) stsp *= fg.var(i).states(); cout << "Total state space: " << stsp << endl; double cavsum_lcbp = 0.0; double cavsum_lcbp2 = 0.0; size_t max_Delta_size = 0; map<size_t,size_t> cavsizes; for( size_t i = 0; i < fg.nrVars(); i++ ) { VarSet di = fg.delta(i); if( cavsizes.count(di.size()) ) cavsizes[di.size()]++; else cavsizes[di.size()] = 1; size_t Ds = fg.Delta(i).nrStates(); if( Ds > max_Delta_size ) max_Delta_size = Ds; cavsum_lcbp += di.nrStates(); for( VarSet::const_iterator j = di.begin(); j != di.end(); j++ ) cavsum_lcbp2 += j->states(); } cout << "Maximum pancake has " << max_Delta_size << " states" << endl; cout << "LCBP with full cavities needs " << cavsum_lcbp << " BP runs" << endl; cout << "LCBP with only pairinteractions needs " << cavsum_lcbp2 << " BP runs" << endl; cout << "Cavity sizes: "; for( map<size_t,size_t>::const_iterator it = cavsizes.begin(); it != cavsizes.end(); it++ ) cout << it->first << "(" << it->second << ") "; cout << endl; cout << "Type: " << (fg.isPairwise() ? "pairwise" : "higher order") << " interactions, " << (fg.isBinary() ? "binary" : "nonbinary") << " variables" << endl; if( fg.isPairwise() ) { bool girth_reached = false; size_t loopdepth; for( loopdepth = 2; loopdepth <= fg.nrVars() && !girth_reached; loopdepth++ ) { size_t nr_loops = countLoops( fg, loopdepth ); cout << "Loops up to " << loopdepth << " variables: " << nr_loops << endl; if( nr_loops > 0 ) girth_reached = true; } if( girth_reached ) cout << "Girth: " << loopdepth-1 << endl; else cout << "Girth: infinity" << endl; } return 0; } }