static void RotateUV(TransformedVertex v[4], float flippedMatrix[16], float ySign) { // Transform these two coordinates to figure out whether they're flipped or not. Vec4f tl; Vec3ByMatrix44(tl.AsArray(), v[2].pos, flippedMatrix); Vec4f br; Vec3ByMatrix44(br.AsArray(), v[0].pos, flippedMatrix); const float invtlw = 1.0f / tl.w; const float invbrw = 1.0f / br.w; const float x1 = tl.x * invtlw; const float x2 = br.x * invbrw; const float y1 = tl.y * invtlw * ySign; const float y2 = br.y * invbrw * ySign; if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2)) SwapUVs(v[1], v[3]); }
void SoftwareTransform( int prim, int vertexCount, u32 vertType, u16 *&inds, int indexType, const DecVtxFormat &decVtxFormat, int &maxIndex, TransformedVertex *&drawBuffer, int &numTrans, bool &drawIndexed, const SoftwareTransformParams *params, SoftwareTransformResult *result) { u8 *decoded = params->decoded; FramebufferManagerCommon *fbman = params->fbman; TextureCacheCommon *texCache = params->texCache; TransformedVertex *transformed = params->transformed; TransformedVertex *transformedExpanded = params->transformedExpanded; float ySign = 1.0f; bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif float uscale = 1.0f; float vscale = 1.0f; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } bool skinningEnabled = vertTypeIsSkinningEnabled(vertType); const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); // Same fixup as in ShaderManager.cpp if (my_isinf(fog_slope)) { // not really sure what a sensible value might be. fog_slope = fog_slope < 0.0f ? -10000.0f : 10000.0f; } if (my_isnan(fog_slope)) { // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 // Just put the fog far away at a large finite distance. // Infinities and NaNs are rather unpredictable in shaders on many GPUs // so it's best to just make it a sane calculation. fog_end = 100000.0f; fog_slope = 1.0f; } VertexReader reader(decoded, decVtxFormat, vertType); if (throughmode) { for (int index = 0; index < maxIndex; index++) { // Do not touch the coordinates or the colors. No lighting. reader.Goto(index); // TODO: Write to a flexible buffer, we don't always need all four components. TransformedVertex &vert = transformed[index]; reader.ReadPos(vert.pos); if (reader.hasColor0()) { reader.ReadColor0_8888(vert.color0); } else { vert.color0_32 = gstate.getMaterialAmbientRGBA(); } if (reader.hasUV()) { reader.ReadUV(vert.uv); vert.u *= uscale; vert.v *= vscale; } else { vert.u = 0.0f; vert.v = 0.0f; } // Ignore color1 and fog, never used in throughmode anyway. // The w of uv is also never used (hardcoded to 1.0.) } } else { // Okay, need to actually perform the full transform. for (int index = 0; index < maxIndex; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; Vec4f c0 = Vec4f(1, 1, 1, 1); Vec4f c1 = Vec4f(0, 0, 0, 0); float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; // We do software T&L for now float out[3]; float pos[3]; Vec3f normal(0, 0, 1); Vec3f worldnormal(0, 0, 1); reader.ReadPos(pos); if (!skinningEnabled) { Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { reader.ReadNrm(normal.AsArray()); if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } else { float weights[8]; reader.ReadWeights(weights); if (reader.hasNormal()) reader.ReadNrm(normal.AsArray()); // Skinning Vec3f psum(0, 0, 0); Vec3f nsum(0, 0, 0); for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12); Vec3f tpos(out); psum += tpos * weights[i]; if (reader.hasNormal()) { Vec3f norm; Norm3ByMatrix43(norm.AsArray(), normal.AsArray(), gstate.boneMatrix+i*12); nsum += norm * weights[i]; } } } // Yes, we really must multiply by the world matrix too. Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix); if (reader.hasNormal()) { normal = nsum; if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } // Perform lighting here if enabled. don't need to check through, it's checked above. Vec4f unlitColor = Vec4f(1, 1, 1, 1); if (reader.hasColor0()) { reader.ReadColor0(&unlitColor.x); } else { unlitColor = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (gstate.isLightingEnabled()) { float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal); // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 (will clamp in ToRGBA().) for (int j = 0; j < 4; j++) { c0[j] += litColor1[j]; } } } else { if (reader.hasColor0()) { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } } else { c0 = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (lmode) { // c1 is already 0. } } float ruv[2] = {0.0f, 0.0f}; if (reader.hasUV()) reader.ReadUV(ruv); // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // We always prescale in the vertex decoder now. uv[0] = ruv[0]; uv[1] = ruv[1]; uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source source = normal.Normalized(); if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! source = normal; if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { Vec3f lightpos0 = Vec3f(&lighter.lpos[gstate.getUVLS0() * 3]).Normalized(); Vec3f lightpos1 = Vec3f(&lighter.lpos[gstate.getUVLS1() * 3]).Normalized(); uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f; uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; // TODO: Write to a flexible buffer, we don't always need all four components. memcpy(&transformed[index].x, v, 3 * sizeof(float)); transformed[index].fog = fogCoef; memcpy(&transformed[index].u, uv, 3 * sizeof(float)); transformed[index].color0_32 = c0.ToRGBA(); transformed[index].color1_32 = c1.ToRGBA(); // The multiplication by the projection matrix is still performed in the vertex shader. // So is vertex depth rounding, to simulate the 16-bit depth buffer. } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real clears. This can provide a speedup on certain mobile chips. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. // Experiment: Disable on PowerVR (see issue #6290) // TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not. bool reallyAClear = false; if (maxIndex > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear()) { int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; reallyAClear = IsReallyAClear(transformed, maxIndex, scissorX2, scissorY2); } if (reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_POWERVR) { // && g_Config.iRenderingMode != FB_NON_BUFFERED_MODE) { // If alpha is not allowed to be separate, it must match for both depth/stencil and color. Vulkan requires this. bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask(); bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask(); if (params->allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil)) { result->color = transformed[1].color0_32; // Need to rescale from a [0, 1] float. This is the final transformed value. result->depth = ToScaledDepth((s16)(int)(transformed[1].z * 65535.0f)); result->action = SW_CLEAR; return; } } // This means we're using a framebuffer (and one that isn't big enough.) if (gstate_c.curTextureHeight < (u32)h && maxIndex >= 2) { // Even if not rectangles, this will detect if either of the first two are outside the framebuffer. // HACK: Adding one pixel margin to this detection fixes issues in Assassin's Creed : Bloodlines, // while still keeping BOF working (see below). const float invTexH = 1.0f / gstate_c.curTextureHeight; // size of one texel. bool tlOutside; bool tlAlmostOutside; bool brOutside; // If we're outside heightFactor, then v must be wrapping or clamping. Avoid this workaround. // If we're <= 1.0f, we're inside the framebuffer (workaround not needed.) // We buffer that 1.0f a little more with a texel to avoid some false positives. tlOutside = transformed[0].v <= heightFactor && transformed[0].v > 1.0f + invTexH; brOutside = transformed[1].v <= heightFactor && transformed[1].v > 1.0f + invTexH; // Careful: if br is outside, but tl is well inside, this workaround still doesn't make sense. // We go with halfway, since we overestimate framebuffer heights sometimes but not by much. tlAlmostOutside = transformed[0].v <= heightFactor && transformed[0].v >= 0.5f; if (tlOutside || (brOutside && tlAlmostOutside)) { // Okay, so we're texturing from outside the framebuffer, but inside the texture height. // Breath of Fire 3 does this to access a render surface at an offset. const u32 bpp = fbman->GetTargetFormat() == GE_FORMAT_8888 ? 4 : 2; const u32 prevH = texCache->AttachedDrawingHeight(); const u32 fb_size = bpp * fbman->GetTargetStride() * prevH; const u32 prevYOffset = gstate_c.curTextureYOffset; if (texCache->SetOffsetTexture(fb_size)) { const float oldWidthFactor = widthFactor; const float oldHeightFactor = heightFactor; widthFactor = (float) w / (float) gstate_c.curTextureWidth; heightFactor = (float) h / (float) gstate_c.curTextureHeight; // We've already baked in the old gstate_c.curTextureYOffset, so correct. const float yDiff = (float) (prevH + prevYOffset - gstate_c.curTextureYOffset) / (float) h; for (int index = 0; index < maxIndex; ++index) { transformed[index].u *= widthFactor / oldWidthFactor; // Inverse it back to scale to the new FBO, and add 1.0f to account for old FBO. transformed[index].v = (transformed[index].v / oldHeightFactor - yDiff) * heightFactor; } } } } // Step 2: expand rectangles. drawBuffer = transformed; numTrans = 0; drawIndexed = false; if (prim != GE_PRIM_RECTANGLES) { // We can simply draw the unexpanded buffer. numTrans = vertexCount; drawIndexed = true; } else { bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) ySign = -ySign; float flippedMatrix[16]; if (!throughmode) { memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0); if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } } //rectangles always need 2 vertices, disregard the last one if there's an odd number vertexCount = vertexCount & ~1; numTrans = 0; drawBuffer = transformedExpanded; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; maxIndex = 4 * vertexCount; for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]]; const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]]; // We have to turn the rectangle into two triangles, so 6 points. // This is 4 verts + 6 indices. // bottom right trans[0] = transVtxBR; // top right trans[1] = transVtxBR; trans[1].y = transVtxTL.y; trans[1].v = transVtxTL.v; // top left trans[2] = transVtxBR; trans[2].x = transVtxTL.x; trans[2].y = transVtxTL.y; trans[2].u = transVtxTL.u; trans[2].v = transVtxTL.v; // bottom left trans[3] = transVtxBR; trans[3].x = transVtxTL.x; trans[3].u = transVtxTL.u; // That's the four corners. Now process UV rotation. if (throughmode) RotateUVThrough(trans); else RotateUV(trans, flippedMatrix, ySign); // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } inds = newInds; drawIndexed = true; // We don't know the color until here, so we have to do it now, instead of in StateMapping. // Might want to reconsider the order of things later... if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) { result->setStencil = true; if (vertexCount > 1) { // Take the bottom right alpha value of the first rect as the stencil value. // Technically, each rect could individually fill its stencil, but most of the // time they use the same one. result->stencilValue = transformed[indsIn[1]].color0[3]; } else { result->stencilValue = 0; } } } result->action = SW_DRAW_PRIMITIVES; }