virtual void processNode(int nodeSubPart, int nodeShapeIndex) { const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundCollider.getCollisionShape()); const btCollisionShape* childShape = compoundShape->getChildShape(nodeShapeIndex); //backup btTransform orgTrans = m_compoundCollider.getWorldTransform(); const btTransform& childTrans = compoundShape->getChildTransform(nodeShapeIndex); btTransform newChildWorldTrans = orgTrans*childTrans ; //the contactpoint is still projected back using the original inverted worldtrans btCollider childCollider(&m_compoundCollider, childShape,m_compoundCollider.getCollisionObject(), newChildWorldTrans); if (!m_childCollisionAlgorithms[nodeShapeIndex]) m_childCollisionAlgorithms[nodeShapeIndex] = m_dispatcher->findAlgorithm(&childCollider,&m_collidingObj,m_sharedManifold); ///detect swapping case if (m_resultOut->getBody0Internal() == m_compoundCollider.getCollisionObject()) { m_resultOut->setShapeIdentifiersA(-1,nodeShapeIndex); } else { m_resultOut->setShapeIdentifiersB(-1,nodeShapeIndex); } btCollisionProcessInfo processInfo(childCollider, m_collidingObj, m_dispatchInfo, m_resultOut, m_dispatcher); m_childCollisionAlgorithms[nodeShapeIndex]->processCollision(processInfo); }
void ProcessChildShape(btCollisionShape* childShape,int index) { btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape()); //backup btTransform orgTrans = m_compoundColObj->getWorldTransform(); btTransform orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform(); const btTransform& childTrans = compoundShape->getChildTransform(index); btTransform newChildWorldTrans = orgTrans*childTrans ; //perform an AABB check first btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1; childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0); m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1); if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1)) { m_compoundColObj->setWorldTransform( newChildWorldTrans); m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans); //the contactpoint is still projected back using the original inverted worldtrans btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape(); m_compoundColObj->internalSetTemporaryCollisionShape( childShape ); if (!m_childCollisionAlgorithms[index]) m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold); ///detect swapping case if (m_resultOut->getBody0Internal() == m_compoundColObj) { m_resultOut->setShapeIdentifiersA(-1,index); } else { m_resultOut->setShapeIdentifiersB(-1,index); } m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut); if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) { btVector3 worldAabbMin,worldAabbMax; m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1)); m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1)); } //revert back transform m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape); m_compoundColObj->setWorldTransform( orgTrans ); m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans); } }
void ProcessChildShape(const btCollisionShape* childShape,int index) { btAssert(index>=0); const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObj->getCollisionShape()); btAssert(index<compoundShape->getNumChildShapes()); //backup btTransform orgTrans = m_compoundColObj->getWorldTransform(); const btTransform& childTrans = compoundShape->getChildTransform(index); btTransform newChildWorldTrans = orgTrans*childTrans ; //perform an AABB check first btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1; childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0); m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1); if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1)) { //the contactpoint is still projected back using the original inverted worldtrans btCollider childCollider(m_compoundColObj, childShape, m_compoundColObj->getCollisionObject(), newChildWorldTrans); if (!m_childCollisionAlgorithms[index]) m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(&childCollider,m_otherObj,m_sharedManifold); ///detect swapping case if (m_resultOut->getBody0Internal() == m_compoundColObj->getCollisionObject()) { m_resultOut->setShapeIdentifiersA(-1,index); } else { m_resultOut->setShapeIdentifiersB(-1,index); } btCollisionProcessInfo processInfo(childCollider, *m_otherObj, m_dispatchInfo, m_resultOut, m_dispatcher); m_childCollisionAlgorithms[index]->processCollision(processInfo); if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) { btVector3 worldAabbMin,worldAabbMax; m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1)); m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1)); } } }
void ProcessChildShape(const btCollisionShape* childShape,int index) { btAssert(index>=0); const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObjWrap->getCollisionShape()); btAssert(index<compoundShape->getNumChildShapes()); //backup btTransform orgTrans = m_compoundColObjWrap->getWorldTransform(); const btTransform& childTrans = compoundShape->getChildTransform(index); btTransform newChildWorldTrans = orgTrans*childTrans ; //perform an AABB check first btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1; childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0); m_otherObjWrap->getCollisionShape()->getAabb(m_otherObjWrap->getWorldTransform(),aabbMin1,aabbMax1); if (gCompoundChildShapePairCallback) { if (!gCompoundChildShapePairCallback(m_otherObjWrap->getCollisionShape(), childShape)) return; } if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1)) { btCollisionObjectWrapper compoundWrap(this->m_compoundColObjWrap,childShape,m_compoundColObjWrap->getCollisionObject(),newChildWorldTrans,-1,index); //the contactpoint is still projected back using the original inverted worldtrans if (!m_childCollisionAlgorithms[index]) m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(&compoundWrap,m_otherObjWrap,m_sharedManifold); const btCollisionObjectWrapper* tmpWrap = 0; ///detect swapping case if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject()) { tmpWrap = m_resultOut->getBody0Wrap(); m_resultOut->setBody0Wrap(&compoundWrap); m_resultOut->setShapeIdentifiersA(-1,index); } else { tmpWrap = m_resultOut->getBody1Wrap(); m_resultOut->setBody1Wrap(&compoundWrap); m_resultOut->setShapeIdentifiersB(-1,index); } m_childCollisionAlgorithms[index]->processCollision(&compoundWrap,m_otherObjWrap,m_dispatchInfo,m_resultOut); #if 0 if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) { btVector3 worldAabbMin,worldAabbMax; m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1)); m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1)); } #endif if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject()) { m_resultOut->setBody0Wrap(tmpWrap); } else { m_resultOut->setBody1Wrap(tmpWrap); } } }