void visit(ccKdTree::BaseNode* node) { assert(node); if (node && node->parent) { assert(node->parent->isNode()); //a leaf can't have children! ccKdTree::Node* parent = static_cast<ccKdTree::Node*>(node->parent); //we choose the right 'side' of the box that corresponds to the parent's split plane CCVector3& boxCorner = (parent->leftChild == node ? m_UpdatedBox.maxCorner() : m_UpdatedBox.minCorner()); //if this side has not been setup yet... if (boxCorner.u[parent->splitDim] != boxCorner.u[parent->splitDim]) //NaN boxCorner.u[parent->splitDim] = parent->splitValue; visit(node->parent); } }
//Helper void MakeSquare(ccBBox& box, int pivotType, int defaultDim = -1) { assert(defaultDim<3); assert(pivotType>=0 && pivotType<3); CCVector3 W = box.getDiagVec(); if (W.x != W.y || W.x != W.z) { if (defaultDim < 0) { //we take the largest one! defaultDim = 0; if (W.u[1] > W.u[defaultDim]) defaultDim = 1; if (W.u[2] > W.u[defaultDim]) defaultDim = 2; } CCVector3 newW(W.u[defaultDim], W.u[defaultDim], W.u[defaultDim]); switch(pivotType) { case 0: //min corner { CCVector3 A = box.minCorner(); box = ccBBox(A, A + newW); } break; case 1: //center { CCVector3 C = box.getCenter(); box = ccBBox(C - newW / 2.0, C + newW / 2.0); } break; case 2: //max corner { CCVector3 B = box.maxCorner(); box = ccBBox(B-newW,B); } break; } } }
bool ccVolumeCalcTool::ComputeVolume( ccRasterGrid& grid, ccGenericPointCloud* ground, ccGenericPointCloud* ceil, const ccBBox& gridBox, unsigned char vertDim, double gridStep, unsigned gridWidth, unsigned gridHeight, ccRasterGrid::ProjectionType projectionType, ccRasterGrid::EmptyCellFillOption emptyCellFillStrategy, ccVolumeCalcTool::ReportInfo& reportInfo, double groundHeight = std::numeric_limits<double>::quiet_NaN(), double ceilHeight = std::numeric_limits<double>::quiet_NaN(), QWidget* parentWidget/*=0*/) { if ( gridStep <= 1.0e-8 || gridWidth == 0 || gridHeight == 0 || vertDim > 2) { assert(false); ccLog::Warning("[Volume] Invalid input parameters"); return false; } if (!ground && !ceil) { assert(false); ccLog::Warning("[Volume] No valid input cloud"); return false; } if (!gridBox.isValid()) { ccLog::Warning("[Volume] Invalid bounding-box"); return false; } //grid size unsigned gridTotalSize = gridWidth * gridHeight; if (gridTotalSize == 1) { if (parentWidget && QMessageBox::question(parentWidget, "Unexpected grid size", "The generated grid will only have 1 cell! Do you want to proceed anyway?", QMessageBox::Yes, QMessageBox::No) == QMessageBox::No) return false; } else if (gridTotalSize > 10000000) { if (parentWidget && QMessageBox::question(parentWidget, "Big grid size", "The generated grid will have more than 10.000.000 cells! Do you want to proceed anyway?", QMessageBox::Yes, QMessageBox::No) == QMessageBox::No) return false; } //memory allocation CCVector3d minCorner = CCVector3d::fromArray(gridBox.minCorner().u); if (!grid.init(gridWidth, gridHeight, gridStep, minCorner)) { //not enough memory return SendError("Not enough memory", parentWidget); } //progress dialog QScopedPointer<ccProgressDialog> pDlg(0); if (parentWidget) { pDlg.reset(new ccProgressDialog(true, parentWidget)); } ccRasterGrid groundRaster; if (ground) { if (!groundRaster.init(gridWidth, gridHeight, gridStep, minCorner)) { //not enough memory return SendError("Not enough memory", parentWidget); } if (groundRaster.fillWith( ground, vertDim, projectionType, emptyCellFillStrategy == ccRasterGrid::INTERPOLATE, ccRasterGrid::INVALID_PROJECTION_TYPE, pDlg.data())) { groundRaster.fillEmptyCells(emptyCellFillStrategy, groundHeight); ccLog::Print(QString("[Volume] Ground raster grid: size: %1 x %2 / heights: [%3 ; %4]").arg(groundRaster.width).arg(groundRaster.height).arg(groundRaster.minHeight).arg(groundRaster.maxHeight)); } else { return false; } } //ceil ccRasterGrid ceilRaster; if (ceil) { if (!ceilRaster.init(gridWidth, gridHeight, gridStep, minCorner)) { //not enough memory return SendError("Not enough memory", parentWidget); } if (ceilRaster.fillWith(ceil, vertDim, projectionType, emptyCellFillStrategy == ccRasterGrid::INTERPOLATE, ccRasterGrid::INVALID_PROJECTION_TYPE, pDlg.data())) { ceilRaster.fillEmptyCells(emptyCellFillStrategy, ceilHeight); ccLog::Print(QString("[Volume] Ceil raster grid: size: %1 x %2 / heights: [%3 ; %4]").arg(ceilRaster.width).arg(ceilRaster.height).arg(ceilRaster.minHeight).arg(ceilRaster.maxHeight)); } else { return false; } } //update grid and compute volume { if (pDlg) { pDlg->setMethodTitle(QObject::tr("Volume computation")); pDlg->setInfo(QObject::tr("Cells: %1 x %2").arg(grid.width).arg(grid.height)); pDlg->start(); pDlg->show(); QCoreApplication::processEvents(); } CCLib::NormalizedProgress nProgress(pDlg.data(), grid.width * grid.height); size_t ceilNonMatchingCount = 0; size_t groundNonMatchingCount = 0; size_t cellCount = 0; //at least one of the grid is based on a cloud grid.nonEmptyCellCount = 0; for (unsigned i = 0; i < grid.height; ++i) { for (unsigned j = 0; j < grid.width; ++j) { ccRasterCell& cell = grid.rows[i][j]; bool validGround = true; cell.minHeight = groundHeight; if (ground) { cell.minHeight = groundRaster.rows[i][j].h; validGround = std::isfinite(cell.minHeight); } bool validCeil = true; cell.maxHeight = ceilHeight; if (ceil) { cell.maxHeight = ceilRaster.rows[i][j].h; validCeil = std::isfinite(cell.maxHeight); } if (validGround && validCeil) { cell.h = cell.maxHeight - cell.minHeight; cell.nbPoints = 1; reportInfo.volume += cell.h; if (cell.h < 0) { reportInfo.removedVolume -= cell.h; } else if (cell.h > 0) { reportInfo.addedVolume += cell.h; } reportInfo.surface += 1.0; ++grid.nonEmptyCellCount; //= matching count ++cellCount; } else { if (validGround) { ++cellCount; ++groundNonMatchingCount; } else if (validCeil) { ++cellCount; ++ceilNonMatchingCount; } cell.h = std::numeric_limits<double>::quiet_NaN(); cell.nbPoints = 0; } cell.avgHeight = (groundHeight + ceilHeight) / 2; cell.stdDevHeight = 0; if (pDlg && !nProgress.oneStep()) { ccLog::Warning("[Volume] Process cancelled by the user"); return false; } } } grid.validCellCount = grid.nonEmptyCellCount; //count the average number of valid neighbors { size_t validNeighborsCount = 0; size_t count = 0; for (unsigned i = 1; i < grid.height - 1; ++i) { for (unsigned j = 1; j < grid.width - 1; ++j) { ccRasterCell& cell = grid.rows[i][j]; if (cell.h == cell.h) { for (unsigned k = i - 1; k <= i + 1; ++k) { for (unsigned l = j - 1; l <= j + 1; ++l) { if (k != i || l != j) { ccRasterCell& otherCell = grid.rows[k][l]; if (std::isfinite(otherCell.h)) { ++validNeighborsCount; } } } } ++count; } } } if (count) { reportInfo.averageNeighborsPerCell = static_cast<double>(validNeighborsCount) / count; } } reportInfo.matchingPrecent = static_cast<float>(grid.validCellCount * 100) / cellCount; reportInfo.groundNonMatchingPercent = static_cast<float>(groundNonMatchingCount * 100) / cellCount; reportInfo.ceilNonMatchingPercent = static_cast<float>(ceilNonMatchingCount * 100) / cellCount; float cellArea = static_cast<float>(grid.gridStep * grid.gridStep); reportInfo.volume *= cellArea; reportInfo.addedVolume *= cellArea; reportInfo.removedVolume *= cellArea; reportInfo.surface *= cellArea; } grid.setValid(true); return true; }
GetCellBBoxVisitor() { //invalidate the initial bounding box m_UpdatedBox.maxCorner() = CCVector3(PC_NAN,PC_NAN,PC_NAN); m_UpdatedBox.minCorner() = CCVector3(PC_NAN,PC_NAN,PC_NAN); }