int main(int argc, char * argv[]) { if (argc != 2) { cerr << "Formato " << argv[0] << " <num_elem>" << endl; return -1; } int n = atoi(argv[1]); int * T = new int[n]; assert(T); srandom(time(0)); for (int i = 0; i < n; i++) { T[i] = random(); }; // escribe_vector(T, n); tantes = high_resolution_clock::now(); heapsort(T, n); tdespues = high_resolution_clock::now(); transcurrido = duration_cast<duration<double>>(tdespues - tantes); cout << n << " "<< transcurrido.count() << endl; // escribe_vector(T, n); delete [] T; return 0; };
iteration_stats do_iteration() { using namespace boost::chrono; using boost::make_tuple; // Zero the counters (to be set during advance() by our slot) tree_time_ = particle_time_ = 0.0; particles_visited_ = pparticles_visited_ = 0; // Get the number of acceleration evals before advancing const int init_neval = particle_pusher_.num_acceleval(); // Get the current time const steady_clock::time_point start_time = steady_clock::now(); // Advance the system particle_pusher_.advance(); // Determine how much time has elapsed const duration<double> net_push_time = steady_clock::now() - start_time; // Generate the iteration statistics; see accel_timings_slot return make_tuple(tree_time_, particle_time_, net_push_time.count() - tree_time_ - particle_time_, particles_visited_, pparticles_visited_, particle_pusher_.num_acceleval() - init_neval); }
/* * * @brief Funcion Principal: * */ int main(int argc, char const *argv[]){ if (argc != 4){ cerr << "Formato " << argv[0] << "<ruta_del_archivo_de_entrada> <num_elem> <num_vect>" << endl; return -1; } int tam_vectores = atoi(argv[2]); //Tamaño vectores int num_vectores = atoi(argv[3]); //Número vectores int num = 0; string ruta=argv[1]; ifstream archivo(ruta.c_str()); // cargamos todos los vectores en una matriz de tipo vector<vector> matrix vectorAux(num_vectores,tam_vectores); matrix vectorT (num_vectores, tam_vectores); vector< vector<int> > vectorRes; for(int i = 0; i < num_vectores; i++){ for (int j = 0 ; j < tam_vectores; j++){ archivo >> num; vectorT.datos[i][j] = num; } } tantes = high_resolution_clock::now(); vectorAux = mergeKvectors(vectorT); tdespues = high_resolution_clock::now(); transcurrido = duration_cast<duration<double>>(tdespues - tantes); cout << tam_vectores << " "<< transcurrido.count() << endl; return 0; }
inline std::string policyProgressbar(unsigned const nTotal, unsigned const current = 0){ using namespace std::chrono; static unsigned maxNTotal = 0; static unsigned part = 0; static unsigned tic = 0; static time_point<steady_clock> startTime; if(part==0){ startTime = steady_clock::now(); } // get the starting time on the very first call std::stringstream ss; auto const now = steady_clock::now(); maxNTotal = std::max(maxNTotal, nTotal); part = current ? current : part+1; //limit the update intervall (not faster than every 35ms. This would be madness.) duration<float> const timeSpent = now - startTime; if(timeSpent.count() > 0.035f*tic || part == maxNTotal){ ++tic; std::string frame; unsigned height; // use all policies to compose a single frame and save its height std::tie(frame, height) = iteratePolicies<PolicyList...>(part, maxNTotal); ss << frame; ss << std::flush; //move the cursor back to the beginning if(part!=maxNTotal) ss << "\033[" << height << "A\r"; else ss << "\n"; } return ss.str(); }
std::string mir::logging::input_timestamp(nanoseconds when) { // Input events use CLOCK_MONOTONIC, and so we must... duration<double, std::milli> const age = steady_clock::now().time_since_epoch() - when; char str[64]; snprintf(str, sizeof str, "%lld (%.6fms ago)", static_cast<long long>(when.count()),age.count()); return std::string(str); }
boost::posix_time::time_duration const to_boost_duration( duration< Rep, Period > const &duration_ ) { BOOST_STATIC_ASSERT( Period::num == 1 ); return boost::date_time::subsecond_duration< boost::posix_time::time_duration, Period::den >( duration_.count() ); }
inline bool operator < (duration<Rep1, Period1> const & lhs , duration<Rep2, Period2> const & rhs) { return lhs.count() < rhs.count(); }
inline duration<Rep1, Period1> operator % (duration<Rep1, Period1> const & lhs , duration<Rep2, Period2> const & rhs) { return lhs.count() % rhs.count(); }
inline duration<Rep1, Period> operator % (duration<Rep1, Period> const & d , Rep2 const & n) { return d.count() % n; }
int Raw2xBase::run() { if (cmdLine.getArgCount() == 0) { std::cout << "Not enough arguments!\n"; printHelpText(); return 0; } if (cmdLine.hasFlag("h") || cmdLine.hasFlag("help")) { printHelpText(); return 0; } std::string inFileName, outFileName; // input_file + output_file if (cmdLine.getArgCount() >= 2 && cmdLine.getArg(1)[0] != '-') // If arg[1] is not a flag... { inFileName = cmdLine.getArg(0); outFileName = cmdLine.getArg(1); } else // Just input_file { inFileName = cmdLine.getArg(0); outFileName.clear(); } // Replace '.raw' extension of source file with the proper extension // and use it for the output if no explicit filename was provided. if (outFileName.empty()) { outFileName = utils::filesys::removeFilenameExtension(inFileName) + outputFileExt; } if (verbose) { std::cout << "In file..: " << inFileName << "\n"; std::cout << "Out file.: " << outFileName << "\n"; std::cout << "Options..: " << cmdLine.getFlagsString() << "\n"; } // We optionally measure execution time. using namespace std::chrono; system_clock::time_point t0, t1; if (timings) { t0 = system_clock::now(); } // Try to open the input file. This might result in an exception. siege::RawImage rawImage(inFileName); if (rawImage.getSurfaceCount() > 1 && mipmaps) { std::string surfName; const int surfCount = rawImage.getSurfaceCount(); for (int s = 0; s < surfCount; ++s) { surfName = utils::filesys::removeFilenameExtension(outFileName) + "_" + std::to_string(s) + outputFileExt; writeImageSurf(rawImage, s, surfName, swizzle); } } else // Single image (mipmap 0): { writeImageSurf(rawImage, 0, outFileName, swizzle); } if (timings) { t1 = system_clock::now(); const duration<double> elapsedSeconds(t1 - t0); const auto endTime = system_clock::to_time_t(t1); #ifdef _MSC_VER char timeStr[256]; ctime_s(timeStr, sizeof(timeStr), &endTime); #else // _MSC_VER const char * const timeStr = std::ctime(&endTime); #endif // _MSC_VER std::cout << "Finished execution on " << timeStr << "Elapsed time: " << elapsedSeconds.count() << "s\n"; } return 0; }
string formatDuration(duration<double> seconds) { return fmt::format("{0:.2f}", seconds.count()); }
// we've made this function private as it doesn't need to be accessed outside this // functor. It contains implemenatation details. void printFormatted( duration<double> elapsed, const string &string ) { cout << "[LOG ENTRY]: " << elapsed.count() << "s, Entry: " << string << endl; }
timeout_t(duration interval, Func&& callback) : callback(std::forward<Func>(callback)), id{::SDL_AddTimer(interval.count(), run_callback, this)} { SDLXX_CHECK(id != 0); }
std::vector<cv::Mat> HierClassifier::classify(cv::Mat image, cv::Mat terrain, cv::Mat segmentation, cv::Mat maskIgnore, int entryWeightThreshold) { Mat regionsOnImage; if(segmentation.empty()){ regionsOnImage = segmentImage(image); } else{ regionsOnImage = segmentation; } vector<Entry> entries = extractEntries(image, terrain, regionsOnImage, maskIgnore, entryWeightThreshold); using namespace std::chrono; high_resolution_clock::time_point start = high_resolution_clock::now(); high_resolution_clock::time_point end; //ofstream log("descriptors"); //for(int e = 0; e < entries.size(); e++){ // log << entries[e].descriptor << endl; //} map<int, int> imageIdToEntry; for(int e = 0; e < entries.size(); e++){ imageIdToEntry[entries[e].imageId] = e; } Mat result(entries.size(), numLabels, CV_32FC1, Scalar(0)); for(int c = 0; c < classifiers.size(); c++){ //cout << "Classifing using classifier " << c << endl; for(int e = 0; e < entries.size(); e++){ //cout << "classInfo.descBeg = " << classifiersInfo[c].descBeg << ", descEnd = " << classifiersInfo[c].descEnd << endl; //cout << "descriptor.numCols = " << entries[e].descriptor.cols << endl; Mat desc = entries[e].descriptor.colRange( classifiersInfo[c].descBeg, classifiersInfo[c].descEnd); //cout << "result, entry " << e << ", " << weights[c]*classifiers[c]->classify(desc) << endl; result.row(e) = result.row(e) + weights[c]*classifiers[c]->classify(desc); } } vector<Mat> ret; ret.resize(numLabels); for(int l = 0; l < numLabels; l++){ ret[l] = Mat(image.rows, image.cols, CV_32FC1, Scalar(-2)); } for(int l = 0; l < numLabels; l++){ for(int r = 0; r < image.rows; r++){ for(int c = 0; c < image.cols; c++){ if(imageIdToEntry.count(regionsOnImage.at<int>(r, c)) > 0){ ret[l].at<float>(r, c) = result.at<float>(imageIdToEntry[regionsOnImage.at<int>(r, c)], l); } } } } end = high_resolution_clock::now(); static duration<double> compTime = duration<double>::zero(); static int times = 0; compTime += duration_cast<duration<double> >(end - start); times++; if(debugLevel >= 1){ cout << "Classify Times: " << times << endl; cout << "Classify Average computing time: " << compTime.count()/times << endl; } return ret; }
void f(duration<double> d, double res) // accept floating point seconds { // d.count() == 3.e-6 when passed microseconds(3) BOOST_ASSERT(d.count()==res); }
duration (duration<Rep2, Period2> const & d) : _r(d.count()) {}
std::vector<Entry> HierClassifier::extractEntries( cv::Mat imageBGR, cv::Mat terrain, cv::Mat regionsOnImage, cv::Mat maskIgnore, int entryWeightThreshold) { using namespace std::chrono; high_resolution_clock::time_point start = high_resolution_clock::now(); if(maskIgnore.empty()){ maskIgnore = Mat(imageBGR.rows, imageBGR.cols, CV_32SC1, Scalar(0)); } //namedWindow("imageBGR"); Mat imageHSV; cvtColor(imageBGR, imageHSV, CV_BGR2HSV); vector<Pixel> pixels; //pixels.resize(imageHSV.rows * imageHSV.cols); for(int r = 0; r < imageHSV.rows; r++){ for(int c = 0; c < imageHSV.cols; c++){ if(maskIgnore.at<int>(r, c) == 0){ pixels.push_back(Pixel(r, c, regionsOnImage.at<int>(r, c))); } } } sort(pixels.begin(), pixels.end()); vector<pair<int, int> > terrainRegion; if(!terrain.empty()){ Mat terrainPointsImage(terrain.cols, 2, CV_32FC1); Mat tmpTerrain = terrain.rowRange(0, 3).t(); Mat tvec(1, 3, CV_32FC1, Scalar(0)); Mat rvec(1, 3, CV_32FC1, Scalar(0)); Mat distCoeffs(1, 5, CV_32FC1, Scalar(0)); projectPoints(tmpTerrain, tvec, rvec, cameraMatrix, Mat(), terrainPointsImage); //terrainPointsImage = terrainPointsImage.t(); terrainPointsImage = terrainPointsImage.reshape(1).t(); //cout << tmpTerrain.rowRange(1, 10) << endl; //cout << terrainPointsImage.rowRange(1, 10) << endl; //cout << cameraMatrix << endl; for(int p = 0; p < terrain.cols; p++){ int imageRow = round(terrainPointsImage.at<float>(1, p)); int imageCol = round(terrainPointsImage.at<float>(0, p)); if(imageRow >= 0 && imageRow < imageBGR.rows && imageCol >= 0 && imageCol < imageBGR.cols && maskIgnore.at<int>(imageRow, imageCol) == 0) { int region = regionsOnImage.at<int>(imageRow, imageCol); terrainRegion.push_back(pair<int, int>(region, p)); } } sort(terrainRegion.begin(), terrainRegion.end()); } high_resolution_clock::time_point endSorting = high_resolution_clock::now(); if(debugLevel >= 1){ cout << "End sorting terrain, terrainRegion.size() = " << terrainRegion.size() << endl; } vector<Entry> ret; int endIm = 0; int endTer = 0; while(endIm < pixels.size()){ Mat values, valuesTer, histogramHS, histogramV, statisticsHSV, stisticsLaser; int begIm = endIm; while(pixels[begIm].imageId == pixels[endIm].imageId){ endIm++; if(endIm == pixels.size()){ break; } } if(debugLevel >= 1){ cout << "segment id = " << pixels[begIm].imageId << ", begIm = " << begIm << ", endIm = " << endIm << endl; } values = Mat(1, endIm - begIm, CV_8UC3); for(int p = begIm; p < endIm; p++){ values.at<Vec3b>(p - begIm) = imageHSV.at<Vec3b>(pixels[p].r, pixels[p].c); } int begTer = endTer; if(begTer < terrainRegion.size()){ while(terrainRegion[begTer].first != pixels[begIm].imageId){ begTer++; if(begTer >= terrainRegion.size()){ break; } } } endTer = begTer; if(endTer < terrainRegion.size()){ while(terrainRegion[begTer].first == terrainRegion[endTer].first){ endTer++; if(endTer >= terrainRegion.size()){ break; } } } if(endTer - begTer > 0){ valuesTer = Mat(terrain.rows, endTer - begTer, CV_32FC1); Mat tmpImageBGR(imageBGR); for(int p = begTer; p < endTer; p++){ //cout << terrainRegion[p].second << endl; terrain.colRange(terrainRegion[p].second, terrainRegion[p].second + 1).copyTo(valuesTer.colRange(p - begTer, p - begTer + 1)); //cout << "terrainRegion[p].second = " << terrainRegion[p].second << endl; //int imageRow = round(terrainPointsImage.at<float>(1 ,terrainRegion[p].second)); //int imageCol = round(terrainPointsImage.at<float>(0, terrainRegion[p].second)); //cout << "Point: " << imageRow << ", " << imageCol << endl; //tmpImageBGR.at<Vec3b>(imageRow, imageCol) = Vec3b(0x00, 0x00, 0xff); } //cout << "ImageId = " << pixels[begIm].imageId << endl; //imshow("imageBGR", imageBGR); //waitKey(); } else{ //cout << "Warning - no terrain values for imageId " << pixels[begIm].imageId << endl; valuesTer = Mat(6, 1, CV_32FC1, Scalar(0)); } if(endIm - begIm > 0){ int channelsHS[] = {0, 1}; float rangeH[] = {0, 60}; float rangeS[] = {0, 256}; const float* rangesHS[] = {rangeH, rangeS}; int sizeHS[] = {histHLen, histSLen}; int channelsV[] = {2}; float rangeV[] = {0, 256}; const float* rangesV[] = {rangeV}; int sizeV[] = {histVLen}; calcHist(&values, 1, channelsHS, Mat(), histogramHS, 2, sizeHS, rangesHS); calcHist(&values, 1, channelsV, Mat(), histogramV, 1, sizeV, rangesV); histogramHS = histogramHS.reshape(0, 1); histogramV = histogramV.reshape(0, 1); normalize(histogramHS, histogramHS); normalize(histogramV, histogramV); if(debugLevel >= 1){ cout << "V size = " << histogramV.size() << ", HS size = " << histogramHS.size() << endl; } values = values.reshape(1, 3); //cout << "values size = " << values.size() << endl; Mat covarHSV; Mat meanHSV; calcCovarMatrix(values, covarHSV, meanHSV, CV_COVAR_NORMAL | CV_COVAR_SCALE | CV_COVAR_COLS, CV_32F); if(debugLevel >= 1){ cout << "Calculated covar matrix" << endl; } covarHSV = covarHSV.reshape(0, 1); meanHSV = meanHSV.reshape(0, 1); //normalize(covarHSV, covarHSV); //normalize(meanHSV, meanHSV); Mat covarLaser, meanLaser; calcCovarMatrix(valuesTer.rowRange(4, 6), covarLaser, meanLaser, CV_COVAR_NORMAL | CV_COVAR_SCALE | CV_COVAR_COLS, CV_32F); covarLaser = covarLaser.reshape(0, 1); meanLaser = meanLaser.reshape(0, 1); //normalize(covarLaser, covarLaser); //normalize(meanLaser, meanLaser); //cout << "covarLaser = " << covarLaser << endl; //cout << "meanLaser = " << meanLaser << endl; //cout << "Entry " << ret.size() << endl; //cout << "histHS = " << histogramHS << endl; //cout << "histV = " << histogramV << endl; //cout << "covarHSV = " << covarHSV << endl; //cout << "meanHSV = " << meanHSV << endl; Mat kurtLaser(1, 2, CV_32FC1); Mat tmpVal; valuesTer.rowRange(4, 6).copyTo(tmpVal); //cout << "tmpVal = " << tmpVal << endl; //cout << "mean(0) = " << meanLaser.at<float>(0) << ", mean(1) = " << meanLaser.at<float>(1) << endl; //cout << "stdDev^4(0) = " << pow(covarLaser.at<float>(0), 2) << ", stdDev^4(3) = " << pow(covarLaser.at<float>(3), 2) << endl; tmpVal.rowRange(0, 1) -= meanLaser.at<float>(0); tmpVal.rowRange(1, 2) -= meanLaser.at<float>(1); pow(tmpVal, 4, tmpVal); kurtLaser.at<float>(0) = sum(tmpVal.rowRange(0, 1))(0); if(tmpVal.cols * pow(covarLaser.at<float>(0), 2) != 0){ kurtLaser.at<float>(0) = kurtLaser.at<float>(0) / (tmpVal.cols * pow(covarLaser.at<float>(0), 2)) - 3; } kurtLaser.at<float>(1) = sum(tmpVal.rowRange(1, 2))(0); if(tmpVal.cols * pow(covarLaser.at<float>(3), 2) != 0){ kurtLaser.at<float>(1) = kurtLaser.at<float>(1) / (tmpVal.cols * pow(covarLaser.at<float>(3), 2)) - 3; } Mat histogramDI; int channelsDI[] = {0, 1}; float rangeD[] = {1500, 2500}; float rangeI[] = {1800, 4000}; const float* rangesDI[] = {rangeD, rangeI}; int sizeDI[] = {histDLen, histILen}; Mat valHistD = valuesTer.rowRange(4, 5); Mat valHistI = valuesTer.rowRange(5, 6); Mat valuesHistDI[] = {valHistD, valHistI}; calcHist(valuesHistDI, 2, channelsDI, Mat(), histogramDI, 2, sizeDI, rangesDI); histogramDI = histogramDI.reshape(0, 1); normalize(histogramDI, histogramDI); //cout << "histogramDI = " << histogramDI << endl; Entry tmp; tmp.imageId = pixels[begIm].imageId; tmp.weight = (endIm - begIm)/* + (endTer - begTer)*/; tmp.descriptor = Mat(1, histHLen*histSLen + histVLen + meanHSVLen + covarHSVLen + histDLen*histILen + meanLaserLen + covarLaserLen, CV_32FC1); int begCol = 0; histogramHS.copyTo(tmp.descriptor.colRange(begCol, begCol + histHLen*histSLen)); begCol += histHLen*histSLen; histogramV.copyTo(tmp.descriptor.colRange(begCol, begCol + histVLen)); begCol += histVLen; meanHSV.copyTo(tmp.descriptor.colRange(begCol, begCol + meanHSVLen)); begCol += meanHSVLen; covarHSV.copyTo(tmp.descriptor.colRange(begCol, begCol + covarHSVLen)); begCol += covarHSVLen; histogramDI.copyTo(tmp.descriptor.colRange(begCol, begCol + histDLen*histILen)); begCol += histDLen*histILen; meanLaser.copyTo(tmp.descriptor.colRange(begCol, begCol + meanLaserLen)); begCol += meanLaserLen; covarLaser.copyTo(tmp.descriptor.colRange(begCol, begCol + covarLaserLen)); begCol += covarLaserLen; //kurtLaser.copyTo(tmp.descriptor.colRange(begCol, begCol + kurtLaserLen)); //begCol += kurtLaserLen; //cout << "descriptor = " << tmp.descriptor << endl; if(endIm - begIm > entryWeightThreshold){ ret.push_back(tmp); } } } static duration<double> sortingTime = duration<double>::zero(); static duration<double> compTime = duration<double>::zero(); static duration<double> wholeTime = duration<double>::zero(); static int times = 0; high_resolution_clock::time_point endComp = high_resolution_clock::now(); sortingTime += duration_cast<duration<double> >(endSorting - start); compTime += duration_cast<duration<double> >(endComp - endSorting); wholeTime += duration_cast<duration<double> >(endComp - start); times++; if(debugLevel >= 1){ cout << "Times: " << times << endl; cout << "Extract Average sorting time: " << sortingTime.count()/times << endl; cout << "Extract Average computing time: " << compTime.count()/times << endl; cout << "Extract Average whole time: " << wholeTime.count()/times << endl; } return ret; }
/*! Wait a specfied time interval before returning. @note The standard library provides `std::this_thread::sleep_for()` and `std::this_thread::sleep_until()` which may be preferred to this function. */ inline void delay(duration interval) { ::SDL_Delay(interval.count()); }
void physics_function(duration<double> d) { std::cout << "d = " << d.count() << '\n'; }
void store(duration const& d) { this->base_type::store(d); acc_(d.count()); }
iter_type put_value(iter_type s, std::ios_base& ios, char_type fill, duration<Rep, Period> const& d) const { return std::use_facet<std::num_put<CharT, iter_type> >(ios.getloc()).put(s, ios, fill, static_cast<long int> (d.count())); }
cv::Mat HierClassifier::segmentImage(cv::Mat image, int kCurSegment){ using namespace std::chrono; high_resolution_clock::time_point start = high_resolution_clock::now(); high_resolution_clock::time_point endSorting; high_resolution_clock::time_point endComp; high_resolution_clock::time_point endMerging; Mat imageR(image.rows, image.cols, CV_32FC1); Mat imageG(image.rows, image.cols, CV_32FC1); Mat imageB(image.rows, image.cols, CV_32FC1); Mat imageChannels[] = {imageR, imageG, imageB}; Mat imageFloat(image.rows, image.cols, CV_32FC3); int nchannels = 3; int nhood[][2] = {{-1, 1}, {1, 0}, {1, 1}, {0, 1}}; /*int nhood[][2] = {{1, 0}, {0, 1}};*/ //cout << "Size of nhood " << sizeof(nhood)/sizeof(nhood[0]) << endl; //cout << "rows: " << image.rows << ", cols: " << image.cols << endl; if(kCurSegment == -1){ kCurSegment = kSegment; } image.convertTo(imageFloat, CV_32F); //resize(imageFloat, imageFloat, Size(320, 240)); GaussianBlur(imageFloat, imageFloat, Size(7, 7), 0.8); split(imageFloat, imageChannels); int nrows = imageFloat.rows; int ncols = imageFloat.cols; Mat segments(nrows, ncols, CV_32SC1); vector<Edge> edges; for(int r = 0; r < nrows; r++){ for(int c = 0; c < ncols; c++){ for(int nh = 0; nh < sizeof(nhood)/sizeof(nhood[0]); nh++){ if((r + nhood[nh][0] < nrows) && (r + nhood[nh][0] >= 0) && (c + nhood[nh][1] < ncols) && (c + nhood[nh][1] >= 0)) { float diffAll = 0; for(int ch = 0; ch < nchannels; ch++){ float diff = abs(imageChannels[ch].at<float>(r, c) - imageChannels[ch].at<float>(r + nhood[nh][0], c + nhood[nh][1])); diffAll += diff*diff; } diffAll = sqrt(diffAll); edges.push_back(Edge(c + ncols*r, c + nhood[nh][1] + ncols*(r + nhood[nh][0]), diffAll)); //if(edges.back().i == 567768 || edges.back().j == 567768){ // cout << "diff = abs(" << (int)imageChannels[ch].at<unsigned char>(r, c) << " - " << (int)imageChannels[ch].at<unsigned char>(r + nhood[nh][0], c + nhood[nh][1]) << ") = " << diff << endl; //} } } } } sort(edges.begin(), edges.end()); //possible improvement by bin sorting endSorting = high_resolution_clock::now(); cout << "End sorting" << endl; //cout << "Channel " << ch << endl; //cout << "Largest differece = " << edges[edges.size() - 1].weight << // ", between (" << edges[edges.size() - 1].i << ", " << edges[edges.size() - 1].j << // ")" << endl; UnionFind sets(nrows * ncols); vector<float> intDiff; intDiff.assign(nrows * ncols, 0); for(vector<Edge>::iterator it = edges.begin(); it != edges.end(); it++){ int iRoot = sets.findSet(it->i); int jRoot = sets.findSet(it->j); //cout << "i = " << it->i << ", j = " << it->j << ", weight = " << it->weight << endl; if(iRoot != jRoot){ //cout << "intDiff[iRoot] + (float)k/sizes[iRoot] = " << intDiff[iRoot] << " + " << (float)k/sizes[iRoot] << " = " << intDiff[iRoot] + (float)k/sizes[iRoot] << endl; //cout << "intDiff[jRoot] + (float)k/sizes[jRoot] = " << intDiff[jRoot] << " + " << (float)k/sizes[jRoot] << " = " << intDiff[jRoot] + (float)k/sizes[jRoot] << endl; if(min(intDiff[iRoot] + (float)kCurSegment/sets.size(iRoot), intDiff[jRoot] + (float)kCurSegment/sets.size(jRoot)) >= it->weight) { //cout << "union " << min(intDiff[iRoot] + (float)k/sizes[iRoot], intDiff[jRoot] + (float)k/sizes[jRoot]) << " >= " << it->weight << endl; int newRoot = sets.unionSets(iRoot, jRoot); intDiff[newRoot] = it->weight; } } } cout << "Mergining small segments" << endl; for(vector<Edge>::iterator it = edges.begin(); it != edges.end(); it++){ int iRoot = sets.findSet(it->i); int jRoot = sets.findSet(it->j); if((iRoot != jRoot) && ((sets.size(iRoot) < minSizeSegment) || (sets.size(jRoot) < minSizeSegment))){ sets.unionSets(iRoot, jRoot); } } cout << "Counting elements" << endl; set<int> numElements; for(int r = 0; r < nrows; r++){ for(int c = 0; c < ncols; c++){ segments.at<int>(r, c) = sets.findSet(c + ncols*r); numElements.insert(sets.findSet(c + ncols*r)); } } cout << "number of elements = " << numElements.size() << endl; endComp = high_resolution_clock::now(); /*Mat finSegments(nrows, ncols, CV_32SC1); UnionFind sets(nrows * ncols); for(vector<Edge>::iterator it = edges.begin(); it != edges.end(); it++){ bool areOneSegment = true; for(int ch = 0; ch < segments.size(); ch++){ if(segments[ch].at<int>(it->i / ncols, it->i % ncols) != segments[ch].at<int>(it->j / ncols, it->j % ncols)){ areOneSegment = false; break; } } if(areOneSegment){ sets.unionSets(it->i, it->j); } } for(int r = 0; r < nrows; r++){ for(int c = 0; c < ncols; c++){ finSegments.at<int>(r, c) = sets.findSet(c + ncols*r); } }*/ endMerging = high_resolution_clock::now(); static duration<double> sortingTime = duration<double>::zero(); static duration<double> compTime = duration<double>::zero(); static duration<double> mergingTime = duration<double>::zero(); static duration<double> wholeTime = duration<double>::zero(); static int times = 0; sortingTime += duration_cast<duration<double> >(endSorting - start); compTime += duration_cast<duration<double> >(endComp - endSorting); mergingTime += duration_cast<duration<double> >(endMerging - endComp); wholeTime += duration_cast<duration<double> >(endMerging - start); times++; cout << "Segment Times: " << times << endl; cout << "Segment Average sorting time: " << sortingTime.count()/times << endl; cout << "Segment Average computing time: " << compTime.count()/times << endl; cout << "Segment Average merging time: " << mergingTime.count()/times << endl; cout << "Segment Average whole time: " << wholeTime.count()/times << endl; return segments; }
constexpr int f (duration < 0 > d, duration < 0 > ) { return d.count (); }