コード例 #1
0
void ConstructA_CG2(const mesh& Mesh, FullMatrix& A)
{
  const int NumPhysElems = Mesh.get_NumPhysElems();
  const int NumBndNodes  = Mesh.get_SubNumBndNodes();
  const int Asize = Mesh.get_SubNumPhysNodes();

  assert_eq(Asize,A.get_NumRows());
  assert_eq(Asize,A.get_NumCols());
  
  dTensor1 A1(6);
  dTensor1 A2(6);
  dTensor1 A3(6);
  dTensor1 A4(6);
  dTensor1 A5(6);
  dTensor1 A6(6);

  A1.set(1, -oneninth     );
  A1.set(2,  4.0*oneninth );
  A1.set(3, -oneninth     );
  A1.set(4,  4.0*oneninth );
  A1.set(5,  4.0*oneninth );
  A1.set(6, -oneninth     );
  
  A2.set(1, -onethird     );
  A2.set(2,  0.0          );
  A2.set(3,  onethird     );
  A2.set(4, -4.0*onethird );
  A2.set(5,  4.0*onethird );
  A2.set(6,  0.0          );
  
  A3.set(1, -onethird     );
  A3.set(2, -4.0*onethird );
  A3.set(3,  0.0          );
  A3.set(4,  0.0          );
  A3.set(5,  4.0*onethird );
  A3.set(6,  onethird     );
  
  A4.set(1,  4.0          );
  A4.set(2, -4.0          );
  A4.set(3,  0.0          );
  A4.set(4, -4.0          );
  A4.set(5,  4.0          );
  A4.set(6,  0.0          );

  A5.set(1,  2.0          );
  A5.set(2, -4.0          );
  A5.set(3,  2.0          );
  A5.set(4,  0.0          );
  A5.set(5,  0.0          );
  A5.set(6,  0.0          );
  
  A6.set(1,  2.0          );
  A6.set(2,  0.0          );
  A6.set(3,  0.0          );
  A6.set(4, -4.0          );
  A6.set(5,  0.0          );
  A6.set(6,  2.0          );

  dTensor2 spts(3,2);
  spts.set(1,1,  1.0/3.0 );
  spts.set(1,2, -1.0/6.0 );
  
  spts.set(2,1, -1.0/6.0 );
  spts.set(2,2, -1.0/6.0 );
  
  spts.set(3,1, -1.0/6.0 );
  spts.set(3,2,  1.0/3.0 );
  
  dTensor1 wgts(3);
  wgts.set(1, 1.0/6.0 );
  wgts.set(2, 1.0/6.0 );
  wgts.set(3, 1.0/6.0 );
  
  // Loop over all elements in the mesh
  for (int i=1; i<=NumPhysElems; i++)
    {
      // Information for element i
      iTensor1 tt(6);
      for (int k=1; k<=6; k++)
	{  tt.set(k, Mesh.get_node_subs(i,k) );  }
      
      // Evaluate gradients of the Lagrange polynomials on Gauss quadrature points      
      dTensor2 gpx(6,3);
      dTensor2 gpy(6,3);
      
      for (int m=1; m<=3; m++)
	{
	  double  xi = spts.get(m,1);
	  double eta = spts.get(m,2);
	  
	  for (int k=1; k<=6; k++)
	    {
	      double gp_xi  = A2.get(k) + 2.0*A5.get(k)*xi + A4.get(k)*eta;
	      double gp_eta = A3.get(k) + A4.get(k)*xi + 2.0*A6.get(k)*eta;

	      gpx.set(k,m, Mesh.get_jmat(i,1,1)*gp_xi
		         + Mesh.get_jmat(i,1,2)*gp_eta );
	      gpy.set(k,m, Mesh.get_jmat(i,2,1)*gp_xi
		         + Mesh.get_jmat(i,2,2)*gp_eta );
	    }
	}

      // Entries of the stiffness matrix A
      double Area = Mesh.get_area_prim(i);
      for (int j=1; j<=6; j++)
	for (int k=1; k<=6; k++)
	  {
	    double tmp = A.get(tt.get(j),tt.get(k));
	    for (int m=1; m<=3; m++)
	      {
		tmp = tmp + 2.0*Area*wgts.get(m)*(gpx.get(j,m)*gpx.get(k,m)+gpy.get(j,m)*gpy.get(k,m));
	      }
	    A.set(tt.get(j),tt.get(k), tmp );
	  }
    }

  // Replace boundary node equations by Dirichlet boundary condition enforcement
  for (int i=1; i<=NumBndNodes; i++)
    {
      const int j=Mesh.get_sub_bnd_node(i);
      
      for (int k=1; k<=A.get_NumCols(); k++)
	{
	  A.set(j,k, 0.0 );	  
	}
      for (int k=1; k<=A.get_NumRows(); k++)
	{
	  A.set(k,j, 0.0 );
	}
      A.set(j,j, 1.0 );
    }

  // Get sparse structure representation
  A.Sparsify();
  
}
コード例 #2
0
// This routine simply glues together many of the routines that are already
// written in the Poisson solver library
//
// phi( 1:SubNumPhysNodes       ) is a scalar quantity.  
//
// E1 ( 1:NumElems, 1:kmax2d ) is a vector quantity.
// E2 ( 1:NumElems, 1:kmax2d ) is a vector quantity.
//
// See also: ConvertEfieldOntoDGbasis
void ComputeElectricField( const double t, const mesh& Mesh, const dTensorBC5& q,
    dTensor2& E1, dTensor2& E2)
{

    //
    const int       mx = q.getsize(1);   assert_eq(mx,dogParamsCart2.get_mx());
    const int       my = q.getsize(2);   assert_eq(my,dogParamsCart2.get_my());
    const int NumElems = q.getsize(3);
    const int     meqn = q.getsize(4);
    const int     kmax = q.getsize(5);

    const int space_order = dogParams.get_space_order();

    // unstructured parameters:
    const int kmax2d    = E2.getsize(2);
    const int NumBndNodes  = Mesh.get_NumBndNodes();
    const int NumPhysNodes = Mesh.get_NumPhysNodes();

    // Quick error check
    if( !Mesh.get_is_submesh() )
    {
        printf("ERROR: mesh needs to have subfactor set to %d\n", space_order);
        printf("Go to Unstructured mesh and remesh the problem\n");
        exit(-1);
    }
    const int SubFactor    = Mesh.get_SubFactor();

    assert_eq( NumElems, Mesh.get_NumElems() );

    // -- Step 1: Compute rho -- //
    dTensor3 rho(NumElems, 1, kmax2d );
    void ComputeDensity( const mesh& Mesh, const dTensorBC5& q, dTensor3& rho );
    ComputeDensity( Mesh, q, rho );

    // -- Step 2: Figure out how large phi needs to be
    int SubNumPhysNodes = 0;
    int SubNumBndNodes  = 0;
    switch( dogParams.get_space_order() )
    {
        case 1:
            SubNumPhysNodes = NumPhysNodes;
            SubNumBndNodes  = NumBndNodes;
            break;

        case 2:
            SubNumPhysNodes = Mesh.get_SubNumPhysNodes();
            SubNumBndNodes  = Mesh.get_SubNumBndNodes();
            if(SubFactor!=2)
            {
                printf("\n");
                printf(" Error: for space_order = %i, need SubFactor = %i\n",space_order,2);
                printf("      SubFactor = %i\n",SubFactor);
                printf("\n");
                exit(1);
            }
            break;

        case 3:
            SubNumPhysNodes = Mesh.get_SubNumPhysNodes();
            SubNumBndNodes  = Mesh.get_SubNumBndNodes();
            if(SubFactor!=3)
            {
                printf("\n");
                printf(" Error: for space_order = %i, need SubFactor = %i\n",space_order,3);
                printf("      SubFactor = %i\n",SubFactor);
                printf("\n");
                exit(1);
            }
            break;

        default:
            printf("\n");
            printf(" ERROR in RunDogpack_unst.cpp: space_order value not supported.\n");
            printf("       space_order = %i\n",space_order);
            printf("\n");
            exit(1);
    }

    // local storage:
    dTensor1 rhs(SubNumPhysNodes);
    dTensor1 phi(SubNumPhysNodes);

    // Get Cholesky factorization matrix R
    //
    // TODO - this should be saved earlier in the code rather than reading
    // from file every time we with to run a Poisson solve!
    //
    SparseCholesky R(SubNumPhysNodes);
    string outputdir = dogParams.get_outputdir();
    R.init(outputdir);
    R.read(outputdir);

    // Create right-hand side vector
    void Rhs2D_unst(const int space_order,
            const mesh& Mesh, const dTensor3& rhs_dg,
            dTensor1& rhs);
    Rhs2D_unst(space_order, Mesh, rho, rhs);

    // Call Poisson solver  
    void PoissonSolver2D_unst(const int space_order,
            const mesh& Mesh,
            const SparseCholesky& R,
            const dTensor1& rhs,
            dTensor1& phi,
            dTensor2& E1,
            dTensor2& E2);
    PoissonSolver2D_unst(space_order, Mesh, R, rhs, phi, E1, E2);

    // Compare errors with the exact Electric field:
    //
    void L2Project_Unst(
        const double time,
        const dTensor2* vel_vec,
        const int istart, 
        const int iend, 
        const int QuadOrder, 
        const int BasisOrder_qin,
        const int BasisOrder_auxin,
        const int BasisOrder_fout,
        const mesh& Mesh, 
        const dTensor3* qin, 
        const dTensor3* auxin, 
        dTensor3* fout, 
        void (*Func)(const double t, const dTensor2* vel_vec, const dTensor2&,const dTensor2&,
            const dTensor2&,dTensor2&));

    const int sorder = dogParams.get_space_order();
    dTensor3 qtmp   (NumElems, 2, kmax2d );  qtmp.setall(0.);
    dTensor3 auxtmp (NumElems, 0, kmax2d );
    dTensor3 ExactE (NumElems, 2, kmax2d );
    L2Project_Unst( t, NULL, 1, NumElems, 
        sorder, sorder, sorder, sorder, Mesh, 
        &qtmp, &auxtmp, &ExactE, 
        &ExactElectricField );

    // Compute errors on these two:
    //
    double err = 0.;
    for( int n=1; n <= NumElems; n++ )
    for( int k=1; k <= kmax2d;   k++ )
    {
        err += Mesh.get_area_prim(n)*pow( ExactE.get(n,1,k) - E1.get(n,k), 2 );
        err += Mesh.get_area_prim(n)*pow( ExactE.get(n,2,k) - E2.get(n,k), 2 );
    }
    printf("error = %2.15e\n", err );

}
コード例 #3
0
// Modified version of the all purpose routine L2Project specifically written
// for projecting the "time-averaged" flux function onto the basis function.
//
// This routine also returns the coefficients of the Lax Wendroff Flux
// Function when expanded with legendre basis functions, and therefore the
// basis expansions produced by this routine can be used for all of the
// Riemann solves.
//
// ---------------------------------------------------------------------
// Inputs should have the following sizes:   
//           TODO - document the inputs here
// ---------------------------------------------------------------------
void L2ProjectLxW_Unst( const int mterms,
        const double alpha, const double beta_dt, const double charlie_dt,
        const int istart, const int iend,               // Start-stop indices
        const int QuadOrder,
        const int BasisOrder_qin,
        const int BasisOrder_auxin,
        const int BasisOrder_fout,
        const mesh& Mesh, 
        const dTensor3* qin, const dTensor3* auxin,     // state vector
        dTensor3* F, dTensor3* G,                       // time-averaged Flux function
        void FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& Aux, dTensor3& flux),
        void DFluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux),
        void D2FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) )
{    

    if( fabs( alpha ) < 1e-14 && fabs( beta_dt ) < 1e-14 && fabs( charlie_dt ) < 1e-14 )
    {
        F->setall(0.);
        G->setall(0.);
        return;
    }

    // starting and ending indices 
    const int   NumElems = Mesh.get_NumElems();
    assert_ge(istart,1);
    assert_le(iend,NumElems);

    // qin variable
    assert_eq(NumElems,qin->getsize(1));
    const int     meqn = qin->getsize(2);
    const int kmax_qin = qin->getsize(3);
    assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2);

    // auxin variable
    assert_eq(NumElems,auxin->getsize(1));
    const int       maux = auxin->getsize(2);
    const int kmax_auxin = auxin->getsize(3);
    assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2);

    // fout variables
    assert_eq(NumElems,    F->getsize(1));
    const int mcomps_out = F->getsize(2);
    const int  kmax_fout = F->getsize(3);
    assert_eq(kmax_fout, (BasisOrder_fout*(BasisOrder_fout+1))/2 );

    // number of quadrature points
    assert_ge(QuadOrder, 1);
    assert_le(QuadOrder, 5);

    // Number of quadrature points
    int mpoints;
    switch( QuadOrder )
    {
        case 1:
            mpoints = 1;
            break;

        case 2:
            mpoints = 3;
            break;

        case 3:
            mpoints = 6;
            break;

        case 4:
            mpoints = 12;
            break;

        case 5:	     
            mpoints = 16;
            break;
    }

    const int kmax = iMax(iMax(kmax_qin, kmax_auxin), kmax_fout);
    dTensor2  phi(mpoints, kmax); // Legendre basis (orthogonal)
    dTensor2 spts(mpoints, 2);    // List of quadrature points
    dTensor1 wgts(mpoints);       // List of quadrature weights

    setQuadPoints_Unst( QuadOrder, wgts, spts );

    // ---------------------------------------------------------------------- //
    // Evaluate the basis functions at each point
    SetLegendreAtPoints_Unst(spts, phi);
    // ---------------------------------------------------------------------- //

    // ---------------------------------------------------------------------- //
    // First-order derivatives
    dTensor2 phi_xi (mpoints, kmax );
    dTensor2 phi_eta(mpoints, kmax );
    SetLegendreGrad_Unst( spts, phi_xi, phi_eta );
    // ---------------------------------------------------------------------- //

    // ---------------------------------------------------------------------- //
    // Second-order derivatives
    dTensor2 phi_xi2  (mpoints, kmax );
    dTensor2 phi_xieta(mpoints, kmax );
    dTensor2 phi_eta2 (mpoints, kmax );
    LegendreDiff2_Unst(spts, &phi_xi2, &phi_xieta, &phi_eta2 );
    // ---------------------------------------------------------------------- //

    // ------------------------------------------------------------- //
    // Loop over every grid cell indexed by user supplied parameters //
    // described by istart...iend, jstart...jend                     // 
    // ------------------------------------------------------------- //
#pragma omp parallel for
    for (int i=istart; i<=iend; i++)
    {

        // These need to be defined locally.  Each mesh element carries its
        // own change of basis matrix, so these need to be recomputed for
        // each element.  The canonical derivatives, phi_xi, and phi_eta can
        // be computed and shared for each element.

        // First-order derivatives
        dTensor2   phi_x(mpoints, kmax_fout);   //   x-derivative of Legendre basis (orthogonal)
        dTensor2   phi_y(mpoints, kmax_fout);   //   y-derivative of Legendre basis (orthogonal)

        // Second-order derivatives
        dTensor2   phi_xx(mpoints, kmax_fout);   //   xx-derivative of Legendre basis (orthogonal)
        dTensor2   phi_xy(mpoints, kmax_fout);   //   xy-derivative of Legendre basis (orthogonal)
        dTensor2   phi_yy(mpoints, kmax_fout);   //   yy-derivative of Legendre basis (orthogonal)

        //find center of current cell
        const int    i1 = Mesh.get_tnode(i,1);
        const int    i2 = Mesh.get_tnode(i,2);
        const int    i3 = Mesh.get_tnode(i,3);

        // Corners:
        const double x1 = Mesh.get_node(i1,1);
        const double y1 = Mesh.get_node(i1,2);
        const double x2 = Mesh.get_node(i2,1);
        const double y2 = Mesh.get_node(i2,2);
        const double x3 = Mesh.get_node(i3,1);
        const double y3 = Mesh.get_node(i3,2);

        // Center of current cell:
        const double xc = (x1+x2+x3)/3.0;
        const double yc = (y1+y2+y3)/3.0;

        // Variables that need to be written to, and therefore are 
        // created for each thread
        dTensor2 xpts   (mpoints, 2);
        dTensor2 qvals  (mpoints, meqn);
        dTensor2 auxvals(mpoints, maux);

        // local storage for Flux function its Jacobian, and the Hessian:
        dTensor3    fvals(mpoints,             meqn, 2);  // flux function (vector)
        dTensor4        A(mpoints,       meqn, meqn, 2);  // Jacobian of flux
        dTensor5        H(mpoints, meqn, meqn, meqn, 2);  // Hessian of flux

        // Compute q, aux and fvals at each Gaussian Quadrature point
        // for this current cell indexed by (i,j)
        // Save results into dTensor2 qvals, auxvals and fvals.
        for (int m=1; m<= mpoints; m++)
        {

            // convert phi_xi and phi_eta derivatives
            // to phi_x and phi_y derivatives through Jacobian
            //
            // Note that: 
            //
            //     pd_x = J11 pd_xi + J12 pd_eta and
            //     pd_y = J21 pd_xi + J22 pd_eta.
            //
            // Squaring these operators yields the second derivatives.
            for (int k=1; k<=kmax_fout; k++)
            {
                phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k)
                             + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) );
                phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k)
                             + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) );

                phi_xx.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,1)*phi_xi2.get(m,k)
                              + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,2)*phi_xieta.get(m,k)
                              + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,1,2)*phi_eta2.get(m,k)
                           );

                phi_xy.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k)
                             +(Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,1)
                             + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,2))*phi_xieta.get(m,k)
                             + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k)
                           );

                phi_yy.set(m,k, Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k)
                              + Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,2)*phi_xieta.get(m,k)
                              + Mesh.get_jmat(i,2,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k)
                           );
            }

            // point on the unit triangle
            const double s = spts.get(m,1);
            const double t = spts.get(m,2);

            // point on the physical triangle
            xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t );
            xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t );

            // Solution values (q) at each grid point
            for (int me=1; me<=meqn; me++)
            {
                qvals.set(m,me, 0.0 );
                for (int k=1; k<=kmax_qin; k++)
                {
                    qvals.set(m,me, qvals.get(m,me) 
                            + phi.get(m,k) * qin->get(i,me,k) );
                }
            }

            // Auxiliary values (aux) at each grid point
            for (int ma=1; ma<=maux; ma++)
            {
                auxvals.set(m,ma, 0.0 );
                for (int k=1; k<=kmax_auxin; k++)
                {
                    auxvals.set(m,ma, auxvals.get(m,ma) 
                            + phi.get(m,k) * auxin->get(i,ma,k) );
                }
            } 
        }

        // ----------------------------------------------------------------- //
        //
        // Part I:
        //
        // Project the flux function onto the basis 
        // functions.  This is the term of order O( 1 ) in the
        // "time-averaged" Taylor expansion of f and g.
        //
        // ----------------------------------------------------------------- //

        // Call user-supplied function to set fvals
        FluxFunc(xpts, qvals, auxvals, fvals);

        // Evaluate integral on current cell (project onto Legendre basis) 
        // using Gaussian Quadrature for the integration
        //
        // TODO - do we want to optimize this by looking into using transposes,
        // as has been done in the 2d/cart code? (5/14/2014) -DS
        for (int me=1; me<=mcomps_out; me++)		
        for (int k=1; k<=kmax; k++)
        {
            double tmp1 = 0.0;
            double tmp2 = 0.0;
            for (int mp=1; mp <= mpoints; mp++)
            {
                tmp1 += wgts.get(mp)*fvals.get(mp, me, 1)*phi.get(mp, k);
                tmp2 += wgts.get(mp)*fvals.get(mp, me, 2)*phi.get(mp, k);
            }
            F->set(i, me, k,  2.0*tmp1 );
            G->set(i, me, k,  2.0*tmp2 );
        }

        // ----------------------------------------------------------------- //
        //
        // Part II:
        //
        // Project the derivative of the flux function onto the basis 
        // functions.  This is the term of order O( \dt ) in the
        // "time-averaged" Taylor expansion of f and g.
        //
        // ----------------------------------------------------------------- //

        // ----------------------------------------------------------------- //
        // Compute pointwise values for fx+gy:
        //
        // We can't multiply fvals of f, and g,
        // by alpha, otherwise we compute the wrong derivative here!
        //
        dTensor2 fx_plus_gy( mpoints, meqn ); fx_plus_gy.setall(0.);
        for( int mp=1; mp <= mpoints; mp++ )
        for( int me=1; me <= meqn; me++ )
        {
            double tmp = 0.;
            for( int k=2; k <= kmax; k++ )                
            {
                tmp += F->get( i, me, k ) * phi_x.get( mp, k );
                tmp += G->get( i, me, k ) * phi_y.get( mp, k );
            }
            fx_plus_gy.set( mp, me, tmp );
        }

        // Call user-supplied Jacobian to set f'(q) and g'(q):
        DFluxFunc( xpts, qvals, auxvals, A );

        // place-holders for point values of
        // f'(q)( fx + gy ) and g'(q)( fx + gy ):
        dTensor2 dt_times_fdot( mpoints, meqn );
        dTensor2 dt_times_gdot( mpoints, meqn );

        // Compute point values for f'(q) * (fx+gy) and g'(q) * (fx+gy):
        for( int mp=1; mp <= mpoints; mp++ )
        for( int m1=1; m1 <= meqn; m1++ )
        {
            double tmp1 = 0.;
            double tmp2 = 0.;
            for( int m2=1; m2 <= meqn; m2++ )
            {
                tmp1 += A.get(mp, m1, m2, 1 ) * fx_plus_gy.get(mp, m2);
                tmp2 += A.get(mp, m1, m2, 2 ) * fx_plus_gy.get(mp, m2);
            }
            dt_times_fdot.set( mp, m1, -beta_dt*tmp1 );
            dt_times_gdot.set( mp, m1, -beta_dt*tmp2 );
        }

        // ---  Third-order terms --- //
        //
        // These are the terms that are O( \dt^2 ) in the "time-averaged"
        // flux function.
        dTensor2 f_tt( mpoints, meqn );   f_tt.setall(0.);
        dTensor2 g_tt( mpoints, meqn );   g_tt.setall(0.);
        if( mterms > 2 )
        {

            // Construct the Hessian at each (quadrature) point
            D2FluxFunc( xpts, qvals, auxvals, H );

            // Second-order derivative terms
            dTensor2 qx_vals (mpoints, meqn);   qx_vals.setall(0.);
            dTensor2 qy_vals (mpoints, meqn);   qy_vals.setall(0.);

            dTensor2 fxx_vals(mpoints, meqn);   fxx_vals.setall(0.);
            dTensor2 gxx_vals(mpoints, meqn);   gxx_vals.setall(0.);

            dTensor2 fxy_vals(mpoints, meqn);   fxy_vals.setall(0.);
            dTensor2 gxy_vals(mpoints, meqn);   gxy_vals.setall(0.);

            dTensor2 fyy_vals(mpoints, meqn);   fyy_vals.setall(0.);
            dTensor2 gyy_vals(mpoints, meqn);   gyy_vals.setall(0.);

            for( int m=1; m <= mpoints; m++ )
            for( int me=1; me <= meqn; me++ )
            {
                // Can start at k=1, because derivative of a constant is
                // zero.
                double tmp_qx = 0.;
                double tmp_qy = 0.;
                for( int  k=2; k <= kmax; k++   )
                {
                    tmp_qx += phi_x.get(m,k) * qin->get(i,me,k);
                    tmp_qy += phi_y.get(m,k) * qin->get(i,me,k);
                }
                qx_vals.set(m,me, tmp_qx );
                qy_vals.set(m,me, tmp_qy );

                // First non-zero terms start at third-order.
                for( int  k=4; k <= kmax; k++   )
                {
                    fxx_vals.set(m,me, fxx_vals.get(m,me) + phi_xx.get(m,k)*F->get(i,me,k) );
                    gxx_vals.set(m,me, gxx_vals.get(m,me) + phi_xx.get(m,k)*G->get(i,me,k) );

                    fxy_vals.set(m,me, fxy_vals.get(m,me) + phi_xy.get(m,k)*F->get(i,me,k) );
                    gxy_vals.set(m,me, gxy_vals.get(m,me) + phi_xy.get(m,k)*G->get(i,me,k) );

                    fyy_vals.set(m,me, fyy_vals.get(m,me) + phi_yy.get(m,k)*F->get(i,me,k) );
                    gyy_vals.set(m,me, gyy_vals.get(m,me) + phi_yy.get(m,k)*G->get(i,me,k) );
                }

            }

            // ----------------------------------- //
            // Part I: Compute (f_x + g_y)_{,t}
            // ----------------------------------- //

            // Compute terms that get multiplied by \pd2{ f }{ q } and \pd2{ g }{ q }.
            dTensor2 fx_plus_gy_t( mpoints, meqn );
            for( int  m = 1;  m <= mpoints; m++ )
            for( int me = 1; me <= meqn; me++   )
            {

                double tmp = 0.;

                // Terms that get multiplied by the Hessian:
                for( int m1=1; m1 <= meqn; m1++ )
                for( int m2=1; m2 <= meqn; m2++ )
                {

                    tmp += H.get(m,me,m1,m2,1)*qx_vals.get(m,m1)*fx_plus_gy.get(m,m2);
                    tmp += H.get(m,me,m1,m2,2)*qy_vals.get(m,m1)*fx_plus_gy.get(m,m2);
                }

                // Terms that get multiplied by f'(q) and g'(q):
                for( int m1=1; m1 <= meqn; m1++ )
                {

                    tmp += A.get(m,me,m1,1)*( fxx_vals.get(m,m1)+gxy_vals.get(m,m1) );
                    tmp += A.get(m,me,m1,2)*( fxy_vals.get(m,m1)+gyy_vals.get(m,m1) );
                }

                fx_plus_gy_t.set( m, me, tmp );
            }

            // ----------------------------------- //
            // Part II: Compute 
            //      f'(q) * fx_plus_gy_t and 
            //      g'(q) * fx_plus_gy_t
            // ----------------------------------- //

            // Add in the third term that gets multiplied by A:
            for( int m=1; m <= mpoints; m++ )
            for( int m1=1; m1 <= meqn; m1++ )
            {
                double tmp1 = 0.;
                double tmp2 = 0.;
                for( int m2=1; m2 <= meqn; m2++ )
                {
                    tmp1 += A.get(m,m1,m2,1)*fx_plus_gy_t.get(m,m2);
                    tmp2 += A.get(m,m1,m2,2)*fx_plus_gy_t.get(m,m2);
                }
                f_tt.set( m, m1, tmp1 );
                g_tt.set( m, m1, tmp2 );
            }

            // ----------------------------------------------- //
            // Part III: Add in contributions from
            //      f''(q) * (fx_plus_gy, fx_plus_gy ) and 
            //      g''(q) * (fx_plus_gy, fx_plus_gy ).
            // ----------------------------------------------- //
            for( int m =1; m <= mpoints; m++ )
            for( int me =1; me <= meqn; me++ )
            {
                double tmp1 = 0.;
                double tmp2 = 0.;

                // Terms that get multiplied by the Hessian:
                for( int m1=1; m1 <= meqn; m1++ )
                for( int m2=1; m2 <= meqn; m2++ )
                {
                    tmp1 += H.get(m,me,m1,m2,1)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2);
                    tmp2 += H.get(m,me,m1,m2,2)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2);
                }

                f_tt.set( m, me, f_tt.get(m,me) + tmp1 );
                g_tt.set( m, me, g_tt.get(m,me) + tmp2 );
            }

        } // End of computing "third"-order terms

        // ---------------------------------------------------------- //
        // 
        // Construct basis coefficients (integrate_on_current_cell)
        //
        // ---------------------------------------------------------- //
        for (int me=1; me<=mcomps_out; me++)		
        for (int k=1; k<=kmax; k++)
        {

            double tmp1 = 0.0;
            double tmp2 = 0.0;
            for (int mp=1; mp<=mpoints; mp++)
            {
                tmp1 += wgts.get(mp)*phi.get(mp,k)*(
                    dt_times_fdot.get(mp, me) + charlie_dt*f_tt.get(mp, me) );
                tmp2 += wgts.get(mp)*phi.get(mp,k)*(
                    dt_times_gdot.get(mp, me) + charlie_dt*g_tt.get(mp, me) );
            }
            F->set(i,me,k,  F->get(i,me,k) + 2.0*tmp1 );
            G->set(i,me,k,  G->get(i,me,k) + 2.0*tmp2 );

        }

    }

}
コード例 #4
0
// This is the positivity preserving limiter proposed in 
// "Maximum-Principle-Satisfying and Positivity-Preserving
// High Order Discontinuous Galerkin Schemes
// for Conservation Laws on Triangular Meshes", Zhang, Xia and Shu
// J. Sci. Comput. (2012).
//
// THIS METHOD ASSUMES THAT EVERY COMPONENT OF CONSERVED VARIABLES SHOULD STAY
// POSITIVE.
//
// In order to implement this for a different scheme, one should rewrite, or
// redefine what components should remain positiive.  This will require
// reworking the control flow logic for how time step lengths are chosen.
void ApplyPosLimiter_Unst(const mesh& Mesh, const dTensor3& aux, dTensor3& q)
{

    const int NumElems      = Mesh.get_NumElems();
    const int NumPhysElems  = Mesh.get_NumPhysElems();
    const int NumEdges      = Mesh.get_NumEdges();
    const int meqn          = q.getsize(2);
    const int kmax          = q.getsize(3);
    const int maux          = aux.getsize(2);
    const int space_order   = dogParams.get_space_order();

    // Do nothing in the case of piecewise constants
    if( space_order == 1 )
    { return; }

    // ------------------------------------------------ //
    // number of points where we want to check solution //
    // ------------------------------------------------ //
    const int space_order_sq = space_order*space_order;
    const int mpts_vec[] = {0, 3*space_order_sq, 18, 3*space_order_sq, 3*space_order_sq };  // TODO - FILL IN 2ND-ORDER CASE
    const int mpoints    = mpts_vec[space_order-1];

    // ---------------------------------------------------------- //
    // sample basis at all points where we want to check solution //
    // ---------------------------------------------------------- //
    dTensor2 spts(mpoints, 2);
    void SetPositivePoints_Unst(const int& space_order, dTensor2& spts);
    SetPositivePoints_Unst(space_order, spts);

    void SamplePhiAtPositivePoints_Unst(const int& space_order, 
            const dTensor2& spts, dTensor2& phi);
    dTensor2 phi(mpoints, kmax);
    SamplePhiAtPositivePoints_Unst(space_order, spts, phi);

    // -------------------------------------------------------------- //
    // q_limited = Q1 + \theta ( q(xi,eta) - Q1 )                     //
    // where theta = min(1, |Q1| / |Q1-m|; m = min_{i} q(xi_i, eta_i) //
    // -------------------------------------------------------------- //
#pragma omp parallel for
    for(int  i=1;  i <= NumPhysElems; i++)
    for(int me=1; me <= meqn; me++)
    {

        double m = 0.0;
        for(int mp=1; mp <= mpoints; mp++)
        {
            // evaluate q at spts(mp) //
            double qnow = 0.0;
            for( int k=1; k <= kmax; k++ )
            {
                qnow += q.get(i,me,k) * phi.get(mp,k);
            }
            m = Min(m, qnow);
        }

        double theta = 0.0;
        double Q1 = q.get(i,me,1);  assert_ge( Q1, -1e-13 );
        if( fabs( Q1 - m ) < 1.0e-14 ){ theta = 1.0; }
        else{ theta = Min( 1.0, fabs( Q1 / (Q1 - m) ) ); }

        // limit q //
        for( int k=2; k <= kmax; k++ )
        {
            q.set(i,me,k, q.get(i,me,k) * theta );
        }

    }

}
コード例 #5
0
// GAUSS-LOBATTO QUADRATURE ALONG EDGE
void SetEdgeDataGL_Unst(const mesh& Mesh, 
			int NumQuadPoints, 
			int NumBasisOrder, 
			edge_data_Unst* EdgeData)
{
  // Quick error check
  if (NumQuadPoints<2 || NumQuadPoints>6 || NumBasisOrder<1 || NumBasisOrder>5)
    {
      printf(" \n");
      printf(" Error in SetEdgeData_Unst.cpp \n");
      printf("   NumQuadPoints must be 2,3,4,5, or 6.\n");
      printf("   NumBasisOrder must be 1,2,3,4, or 5.\n");
      printf("     NumQuadPoints = %i\n",NumQuadPoints);
      printf("     NumBasisOrder = %i\n",NumBasisOrder);
      printf("\n");
      exit(1);
    }

  // ---------------------------------
  // Set quadrature weights and points
  // ---------------------------------
  switch( NumQuadPoints )
    {
    case 2:
      EdgeData->GL_wgts1d->set(1,  1.0 );
      EdgeData->GL_wgts1d->set(2,  1.0 );
      
      EdgeData->GL_xpts1d->set(1,  1.0 );
      EdgeData->GL_xpts1d->set(2, -1.0 );
      break;
      
    case 3:
      EdgeData->GL_wgts1d->set(1,  onethird );
      EdgeData->GL_wgts1d->set(2,  4.0*onethird );
      EdgeData->GL_wgts1d->set(3,  onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0 );
      EdgeData->GL_xpts1d->set(2,  0.0 );
      EdgeData->GL_xpts1d->set(3, -1.0 );
      break;
      
    case 4:
      EdgeData->GL_wgts1d->set(1,  0.5*onethird );
      EdgeData->GL_wgts1d->set(2,  2.5*onethird );
      EdgeData->GL_wgts1d->set(3,  2.5*onethird );
      EdgeData->GL_wgts1d->set(4,  0.5*onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0  );
      EdgeData->GL_xpts1d->set(2,  osq5 );
      EdgeData->GL_xpts1d->set(3, -osq5 );
      EdgeData->GL_xpts1d->set(4, -1.0  );
      break;
      
    case 5:
      EdgeData->GL_wgts1d->set(1,  0.1  );
      EdgeData->GL_wgts1d->set(2,  49.0/90.0 );
      EdgeData->GL_wgts1d->set(3,  32.0/45.0 );
      EdgeData->GL_wgts1d->set(4,  49.0/90.0 );
      EdgeData->GL_wgts1d->set(5,  0.1 );
      
      EdgeData->GL_xpts1d->set(1,  1.0      );
      EdgeData->GL_xpts1d->set(2,  sq3*osq7 );
      EdgeData->GL_xpts1d->set(3,  0.0      );
      EdgeData->GL_xpts1d->set(4, -sq3*osq7 );
      EdgeData->GL_xpts1d->set(5, -1.0      );        
      break;
      
    case 6:      
      EdgeData->GL_wgts1d->set(1,  0.2*onethird  );
      EdgeData->GL_wgts1d->set(2,  (1.4 - 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(3,  (1.4 + 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(4,  (1.4 + 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(5,  (1.4 - 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(6,  0.2*onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0                           );
      EdgeData->GL_xpts1d->set(2,  (1/21.0)*sqrt(147.0+42.0*sq7) );
      EdgeData->GL_xpts1d->set(3,  (1/21.0)*sqrt(147.0-42.0*sq7) );
      EdgeData->GL_xpts1d->set(4, -(1/21.0)*sqrt(147.0-42.0*sq7) );
      EdgeData->GL_xpts1d->set(5, -(1/21.0)*sqrt(147.0+42.0*sq7) );
      EdgeData->GL_xpts1d->set(6, -1.0                           );
      break;
    }

  // ---------------------------------
  // Legendre basis functions on the 
  // left and right of each edge
  // ---------------------------------
  const int NumEdges = Mesh.get_NumEdges();
  const int NumBasisComps = (NumBasisOrder*(NumBasisOrder+1))/2;
  dTensor1 xp1(3);
  dTensor1 yp1(3);
  dTensor1 xp2(3);
  dTensor1 yp2(3);
  dTensor1 xy1(2);
  dTensor1 xy2(2);
  dTensor1 mu1(NumBasisComps);
  dTensor1 mu2(NumBasisComps);

  for (int i=1; i<=NumEdges; i++)
    {   
      // Get edge information
      const double x1 = Mesh.get_edge(i,1);
      const double y1 = Mesh.get_edge(i,2);
      const double x2 = Mesh.get_edge(i,3);
      const double y2 = Mesh.get_edge(i,4);
      
      const int e1 = Mesh.get_eelem(i,1);
      const int e2 = Mesh.get_eelem(i,2);

      // Get element information about
      // the two elements that meet at
      // the current edge
      const double Area1 = Mesh.get_area_prim(e1);
      const double Area2 = Mesh.get_area_prim(e2);

      for (int k=1; k<=3; k++)
	{
	  xp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),1) );
	  yp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),2) );

	  xp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),1) );
	  yp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),2) );
	}

      const double xc1 = (xp1.get(1) + xp1.get(2) + xp1.get(3))/3.0;
      const double yc1 = (yp1.get(1) + yp1.get(2) + yp1.get(3))/3.0;
      const double xc2 = (xp2.get(1) + xp2.get(2) + xp2.get(3))/3.0;
      const double yc2 = (yp2.get(1) + yp2.get(2) + yp2.get(3))/3.0;

      // quadrature points on the edge
      for (int m=1; m<=NumQuadPoints; m++)
	{
	  // Take integration point s (in [-1,1])
	  // and map to physical domain
	  const double s = EdgeData->GL_xpts1d->get(m);
	  const double x = x1 + 0.5*(s+1.0)*(x2-x1);
	  const double y = y1 + 0.5*(s+1.0)*(y2-y1);

	  // Take physical point (x,y)
	  // and map into the coordinates
	  // of the two triangles that are
	  // adjacent to the current edge
	  xy1.set(1, ((yp1.get(3)-yp1.get(1))*(x-xc1) 
		    + (xp1.get(1)-xp1.get(3))*(y-yc1))/(2.0*Area1) );
	  xy1.set(2, ((yp1.get(1)-yp1.get(2))*(x-xc1) 
		    + (xp1.get(2)-xp1.get(1))*(y-yc1))/(2.0*Area1) );
	  
	  xy2.set(1, ((yp2.get(3)-yp2.get(1))*(x-xc2) 
		    + (xp2.get(1)-xp2.get(3))*(y-yc2))/(2.0*Area2) );
	  xy2.set(2, ((yp2.get(1)-yp2.get(2))*(x-xc2) 
		    + (xp2.get(2)-xp2.get(1))*(y-yc2))/(2.0*Area2) );

	  // Evaluate monomials at locations xy1
	  double xi = xy1.get(1);
	  double xi2 = xi*xi;
	  double xi3 = xi*xi2;
	  double xi4 = xi*xi3;

	  double eta = xy1.get(2);
	  double eta2 = eta*eta;
	  double eta3 = eta*eta2;
	  double eta4 = eta*eta3;

	  switch( NumBasisOrder )
	    {
	    case 5:  // fifth order		    		    
	      mu1.set(15, eta4     );
	      mu1.set(14, xi4      );
	      mu1.set(13, xi2*eta2 );
	      mu1.set(12, eta3*xi  );
	      mu1.set(11, xi3*eta  );
	      
	    case 4:  // fourth order
	      mu1.set(10, eta3     );
	      mu1.set(9,  xi3      );
	      mu1.set(8,  xi*eta2  );
	      mu1.set(7,  eta*xi2  );
	      
	    case 3:  // third order
	      mu1.set(6,  eta2     );
	      mu1.set(5,  xi2      );
	      mu1.set(4,  xi*eta   );		    
	      
	    case 2:  // second order		    
	      mu1.set(3, eta       );
	      mu1.set(2, xi        );
	      
	    case 1:  // first order
	      mu1.set(1, 1.0       );
	      
	      break;		    
	    }
	  
	  // Evaluate monomials at locations xy2
	  xi = xy2.get(1);
	  xi2 = xi*xi;
	  xi3 = xi*xi2;
	  xi4 = xi*xi3;
	  
	  eta = xy2.get(2);
	  eta2 = eta*eta;
	  eta3 = eta*eta2;
	  eta4 = eta*eta3;

	  switch( NumBasisOrder )
	    {
	    case 5:  // fifth order		    		    
	      mu2.set(15, eta4     );
	      mu2.set(14, xi4      );
	      mu2.set(13, xi2*eta2 );
	      mu2.set(12, eta3*xi  );
	      mu2.set(11, xi3*eta  );
	      
	    case 4:  // fourth order
	      mu2.set(10, eta3     );
	      mu2.set(9,  xi3      );
	      mu2.set(8,  xi*eta2  );
	      mu2.set(7,  eta*xi2  );
	      
	    case 3:  // third order
	      mu2.set(6,  eta2     );
	      mu2.set(5,  xi2      );
	      mu2.set(4,  xi*eta   );		    
	      
	    case 2:  // second order		    
	      mu2.set(3, eta       );
	      mu2.set(2, xi        );
	      
	    case 1:  // first order
	      mu2.set(1, 1.0       );
	      
	      break;		    
	    }
	  
	  // Finally, convert monomials to Legendre Polys
	  // on the two adjacent triangle
	  for (int k=1; k<=NumBasisComps; k++)
	    {
	      double tmp1 = 0.0;
	      double tmp2 = 0.0;
	      for (int j=1; j<=k; j++)
		{  
		  tmp1 = tmp1 + Mmat[k-1][j-1]*mu1.get(j);
		  tmp2 = tmp2 + Mmat[k-1][j-1]*mu2.get(j);
		}
	      
	      EdgeData->GL_phi_left->set(i,m,k,  tmp1 );
	      EdgeData->GL_phi_right->set(i,m,k, tmp2 );
	    }
	}
    }
  
}
コード例 #6
0
void ConstructL_Unst(
    const double t,
    const dTensor2* vel_vec,
    const mesh& Mesh,
    const edge_data_Unst& EdgeData,
    dTensor3& aux, // SetBndValues_Unst modifies ghost cells
    dTensor3& q,   // SetBndValues_Unst modifies ghost cells
    dTensor3& Lstar, 
    dTensor1& smax)
{

    const int NumElems      = Mesh.get_NumElems();
    const int NumPhysElems  = Mesh.get_NumPhysElems();
    const int NumEdges      = Mesh.get_NumEdges();
    const int meqn          = q.getsize(2);
    const int kmax          = q.getsize(3);
    const int maux          = aux.getsize(2);
    const int space_order   = dogParams.get_space_order();

    dTensor3 EdgeFluxIntegral(NumElems,meqn,kmax);
    dTensor3 ElemFluxIntegral(NumElems,meqn,kmax);
    dTensor3              Psi(NumElems,meqn,kmax);


    // ---------------------------------------------------------
    // Boundary Conditions
    SetBndValues_Unst(Mesh,&q,&aux);  
    
    // Positivity limiter
    void ApplyPosLimiter_Unst(const mesh& Mesh, const dTensor3& aux, dTensor3& q);
    if( dogParams.using_moment_limiter() )
    { ApplyPosLimiter_Unst(Mesh, aux, q); }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part I: compute flux integral on element edges
    // ---------------------------------------------------------

    // Loop over all interior edges and solve Riemann problems
    // dTensor1 nvec(2);

    // Loop over all interior edges
    EdgeFluxIntegral.setall(0.);
    ElemFluxIntegral.setall(0.);

    // Loop over all interior edges
#pragma omp parallel for
    for (int i=1; i<=NumEdges; i++)
    {
        // Edge coordinates
        double x1 = Mesh.get_edge(i,1);
        double y1 = Mesh.get_edge(i,2);
        double x2 = Mesh.get_edge(i,3);
        double y2 = Mesh.get_edge(i,4);

        // Elements on either side of edge
        int ileft  = Mesh.get_eelem(i,1);
        int iright = Mesh.get_eelem(i,2);  
        double Areal = Mesh.get_area_prim(ileft);
        double Arear = Mesh.get_area_prim(iright);

        // Scaled normal to edge
        dTensor1 nhat(2);      
        nhat.set(1, (y2-y1) );
        nhat.set(2, (x1-x2) );

        // Variables to store flux integrals along edge
        dTensor2 Fr_tmp(meqn,dogParams.get_space_order());
        dTensor2 Fl_tmp(meqn,dogParams.get_space_order());

        // Loop over number of quadrature points along each edge
        for (int ell=1; ell<=dogParams.get_space_order(); ell++)
        {
            dTensor1 Ql(meqn),Qr(meqn);
            dTensor1 Auxl(maux),Auxr(maux);	  

            // Riemann data - q
            for (int m=1; m<=meqn; m++)
            {
                Ql.set(m, 0.0 );
                Qr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Ql.set(m, Ql.get(m) + EdgeData.phi_left->get(i,ell,k) 
                            *q.get(ileft, m,k) );
                    Qr.set(m, Qr.get(m) + EdgeData.phi_right->get(i,ell,k)
                            *q.get(iright,m,k) );
                }

            }


            // Riemann data - aux
            for (int m=1; m<=maux; m++)
            {
                Auxl.set(m, 0.0 );
                Auxr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Auxl.set(m, Auxl.get(m) + EdgeData.phi_left->get(i,ell,k)
                            *aux.get(ileft, m,k) );
                    Auxr.set(m, Auxr.get(m) + EdgeData.phi_right->get(i,ell,k)
                            *aux.get(iright,m,k) );
                }
            }

            // Solve Riemann problem
            dTensor1 xedge(2);
            double s = EdgeData.xpts1d->get(ell);
            xedge.set(1, x1 + 0.5*(s+1.0)*(x2-x1) );
            xedge.set(2, y1 + 0.5*(s+1.0)*(y2-y1) );
            dTensor1 Fl(meqn),Fr(meqn);
            const double smax_edge = RiemannSolve(vel_vec, nhat, xedge, Ql, Qr, Auxl, Auxr, Fl, Fr);
            smax.set(i, Max(smax_edge,smax.get(i)) );

            // Construct fluxes
            for (int m=1; m<=meqn; m++)
            {
                Fr_tmp.set(m,ell, Fr.get(m) );
                Fl_tmp.set(m,ell, Fl.get(m) );
            }
        }

        // Add edge integral to line integral around the full element
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double Fl_sum = 0.0;
            double Fr_sum = 0.0;
            for (int ell=1; ell<=dogParams.get_space_order(); ell++)
            {
                Fl_sum = Fl_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_left->get(i,ell,k) *Fl_tmp.get(m,ell);
                Fr_sum = Fr_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_right->get(i,ell,k)*Fr_tmp.get(m,ell);
            }
            EdgeFluxIntegral.set(ileft, m,k, EdgeFluxIntegral.get(ileft, m,k) + Fl_sum/Areal );
            EdgeFluxIntegral.set(iright,m,k, EdgeFluxIntegral.get(iright,m,k) - Fr_sum/Arear );
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part II: compute intra-element contributions
    // ---------------------------------------------------------
    L2ProjectGrad_Unst(vel_vec, 1,NumPhysElems,
            space_order,space_order,space_order,space_order,
            Mesh,&q,&aux,&ElemFluxIntegral,&FluxFunc);
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part III: compute source term
    // --------------------------------------------------------- 
    if ( dogParams.get_source_term()>0 )
    {        
        // Set source term on computational grid
        // Set values and apply L2-projection
        L2Project_Unst(t, vel_vec, 1,NumPhysElems,
                space_order,space_order,space_order,space_order,
                Mesh,&q,&aux,&Psi,&SourceTermFunc);
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part IV: construct Lstar
    // ---------------------------------------------------------
    if (dogParams.get_source_term()==0)  // Without Source Term
    { 
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)	
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double tmp = ElemFluxIntegral.get(i,m,k) - EdgeFluxIntegral.get(i,m,k);
            Lstar.set(i,m,k, tmp );	      
        }
    }
    else  // With Source Term
    {
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double tmp = ElemFluxIntegral.get(i,m,k) 
                - EdgeFluxIntegral.get(i,m,k)
                + Psi.get(i,m,k);

            Lstar.set(i,m,k, tmp );
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part V: add extra contributions to Lstar
    // ---------------------------------------------------------
    // Call LstarExtra
    LstarExtra_Unst(Mesh,&q,&aux,&Lstar);
    // ---------------------------------------------------------

}
コード例 #7
0
ファイル: shaders.cpp プロジェクト: jettca/Learning-GLSL
int setupTextureShader(GLuint &textureID, const mesh& object)
{
    glewInit();
    if(!glewIsSupported("GL_VERSION_2_0 GL_ARB_multitexture GL_EXT_framebuffer_object")) 
    {
        fprintf(stderr, "Required OpenGL extensions missing\n");
        return -1;
    }

    /* create texture */
    glGenTextures(1, &textureID);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, textureID);

    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

    /* load texture file */
    int width, height, components;
    unsigned char *data = stbi_load("static/uv_color_map.png",
            &width, &height, &components, 0);

    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,
            GL_UNSIGNED_BYTE, data);
    
    stbi_image_free(data);

    /* load UV data from mesh */
    std::vector<glm::vec2> texture_uvs = object.getTextureUVs();
    unsigned int uvsize = texture_uvs.size();
    unsigned int uvmem = 2*uvsize*sizeof(GLfloat);
    GLfloat *uv_buffer_data = (GLfloat *)malloc(uvmem);
    for(int i = 0; i < uvsize; i++)
    {
        uv_buffer_data[2*i] = texture_uvs.at(i).x;
        uv_buffer_data[2*i + 1] = texture_uvs.at(i).y;
    }

    /* pass data to shader */
    GLuint uvBuffer;
    glGenBuffers(1, &uvBuffer);
    glBindBuffer(GL_ARRAY_BUFFER, uvBuffer);
    glBufferData(GL_ARRAY_BUFFER, uvmem, uv_buffer_data, GL_STATIC_DRAW);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, (void*)0);

    free(uv_buffer_data);

    glm::ivec2 shaders = loadShaders("src/texture.vert", "src/texture.frag");
    GLuint vertexShader = shaders.x;
    GLuint fragmentShader = shaders.y;

    /* create and link program */
    int program = glCreateProgram();

    glBindAttribLocation(program, 0, "vertexUV");
    int loc = glGetUniformLocation(program, "texsampler");
    glUniform1i(loc, 0);

    glAttachShader(program, vertexShader);
    glAttachShader(program, fragmentShader);
    glLinkProgram(program);

    GLint pstatus;
    glGetProgramiv(program, GL_LINK_STATUS, &pstatus);
    if(pstatus != GL_TRUE)
    {
        char log[2048];
        int len;
        glGetProgramInfoLog(program, 2048, (GLsizei*)&len, log);
        fprintf(stderr, "%s", log);
        glDeleteProgram(program);
        return -1;
    }
    return program;
}
コード例 #8
0
void draw_3D_graphics()
{
    static double Px, Py, Pz, roll, pitch, yaw, yawA;
    static int initilization = 0;
    int i;

    static double x = 0.0, dx; // x - an offset for the object
    static double y = 0.0, dy; // z offset controlled by keyboard input
    static double t; // clock time from t0
    static double t0; // initial clock time
    static double T, fps, tp, dt, t_sim;

    // Declare and load x-file mesh object for later
    static mesh m1("car.x");

    // Change scale
    m1.Scale = 0.5;

    // Set initial position for mesh (proper positioning)
    m1.Roll_0 = 1.645;

    // Initialize everything here (once)
    if (!initilization)
    {
        t0 = high_resolution_time();
        tp = 0.0;
        t_sim = 0.0;

        initilization = 1;
    }

    // set_view();
    set_2D_view(50.0, 50.0);

    // draw the axes (red = x, y = green, z = blue)
    draw_XYZ(5.0);  // set axes of 5 m length

    t = high_resolution_time() - t0; // Time since start, as measured by a clock
    T = t - tp; // calculate dt frame or period
    fps = 1 / T;
    tp = t; // save previous time for later


    dt = 0.001; // we can pick a small dt for performance / stability
    while (t_sim < t) {
        sim_step(dt, x, y, yaw);
        t_sim += dt;
    }

    // Use keyboard input to change yaw (upper keys for alphabet)
    if (KEY('Z')) yaw -= 0.001;
    if (KEY('X')) yaw += 0.001;

    // connect graphics parameters with the simulation output
    // NOTE: BECAUSE OF THE WAY WE'VE WRITTEN OUR SIMULATION CODE, THE SIGN NOTATION IS DIFFERENT!
    // HENCE THE NEED FOR YAWA = YAW ACTUAL
    Px = x;
    Py = y;
    Pz = 0;
    roll = 0;
    pitch = 0;
    yawA = -yaw;

    // draw x-file / mesh object
    m1.draw(Px, Py, Pz, yawA, pitch, roll);
}
コード例 #9
0
bool load_content()
{
	// Construct geometry object
	geometry geom;
	geom.set_type(GL_QUADS);
	// Create quad data
	// Positions
	vector<vec3> positions
	{
		vec3(-1.0f, 1.0f, 0.0f),
		vec3(-1.0f, -1.0f, 0.0f),
		vec3(1.0f, -1.0f, 0.0f),
		vec3(1.0f, 1.0f, 0.0f)
	};
	// Texture coordinates
	vector<vec2> tex_coords
	{
		vec2(0.0f, 1.0f),
		vec2(0.0f, 0.0f),
		vec2(1.0f, 0.0f),
		vec2(1.0f, 1.0f)
	};
	// Add to the geometry
	geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
	geom.add_buffer(tex_coords, BUFFER_INDEXES::TEXTURE_COORDS_0);

	// Create mesh object
	m = mesh(geom);
	// Scale geometry
	m.get_transform().scale = vec3(10.0f, 10.0f, 10.0f);

	// ********************
	// Load in blend shader
	// ********************
	eff.add_shader("..\\resources\\shaders\\blend.vert", GL_VERTEX_SHADER);			// vertex
	eff.add_shader("..\\resources\\shaders\\blend.frag", GL_FRAGMENT_SHADER);		// fragment

    // ************
	// Build effect
    // ************
	eff.build();


	// **********************
	// Load main two textures
	// **********************
	texs[0] = new texture("..\\resources\\textures\\grass.png", false, false);
	texs[1] = new texture("..\\resources\\textures\\stonygrass.jpg", false, false);


	// **************
	// Load blend map
	// **************
	blend_map = texture("..\\resources\\textures\\blend_map.jpg", false, false);

	// Set camera properties
	cam.set_position(vec3(0.0f, 0.0f, 30.0f));
	cam.set_target(vec3(0.0f, 0.0f, 0.0f));
	auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
	cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);

	return true;
}