static void printWithSpacePadding(raw_ostream &OS, T Data, unsigned Size) { uint64_t OldPos = OS.tell(); OS << Data; unsigned SizeSoFar = OS.tell() - OldPos; assert(SizeSoFar <= Size && "Data doesn't fit in Size"); OS.indent(Size - SizeSoFar); }
static void printMemberHeader(raw_ostream &Out, uint64_t Pos, raw_ostream &StringTable, StringMap<uint64_t> &MemberNames, object::Archive::Kind Kind, bool Thin, const NewArchiveMember &M, sys::TimePoint<std::chrono::seconds> ModTime, unsigned Size) { if (isBSDLike(Kind)) return printBSDMemberHeader(Out, Pos, M.MemberName, ModTime, M.UID, M.GID, M.Perms, Size); if (!useStringTable(Thin, M.MemberName)) return printGNUSmallMemberHeader(Out, M.MemberName, ModTime, M.UID, M.GID, M.Perms, Size); Out << '/'; uint64_t NamePos; if (Thin) { NamePos = StringTable.tell(); StringTable << M.MemberName << "/\n"; } else { auto Insertion = MemberNames.insert({M.MemberName, uint64_t(0)}); if (Insertion.second) { Insertion.first->second = StringTable.tell(); StringTable << M.MemberName << "/\n"; } NamePos = Insertion.first->second; } printWithSpacePadding(Out, NamePos, 15); printRestOfMemberHeader(Out, ModTime, M.UID, M.GID, M.Perms, Size); }
static void printLine(raw_ostream &OS, const Twine &Prefix, char Fill, StringRef Suffix) { uint64_t Pos = OS.tell(); OS << Prefix; for (unsigned i = OS.tell() - Pos, e = 80 - Suffix.size(); i != e; ++i) OS << Fill; OS << Suffix << '\n'; }
static void printWithSpacePadding(raw_ostream &OS, T Data, unsigned Size) { uint64_t OldPos = OS.tell(); OS << Data; unsigned SizeSoFar = OS.tell() - OldPos; assert(Size >= SizeSoFar && "Data doesn't fit in Size"); unsigned Remaining = Size - SizeSoFar; for (unsigned I = 0; I < Remaining; ++I) OS << ' '; }
static void printLine(raw_ostream &OS, const Twine &Prefix, char Fill, StringRef Suffix) { size_t Pos = (size_t)OS.tell(); assert((Prefix.str().size() + Suffix.size() <= MAX_LINE_LEN) && "header line exceeds max limit"); OS << Prefix; for (size_t i = (size_t)OS.tell() - Pos, e = MAX_LINE_LEN - Suffix.size(); i < e; ++i) OS << Fill; OS << Suffix << '\n'; }
std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) { OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator; // Populate the hash table generator. for (const auto &I : FunctionData) Generator.insert(I.getKey(), &I.getValue()); using namespace llvm::support; endian::Writer<little> LE(OS); // Write the header. IndexedInstrProf::Header Header; Header.Magic = IndexedInstrProf::Magic; Header.Version = IndexedInstrProf::Version; Header.MaxFunctionCount = MaxFunctionCount; Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType); Header.HashOffset = 0; int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); // Only write out all the fields execpt 'HashOffset'. We need // to remember the offset of that field to allow back patching // later. for (int I = 0; I < N - 1; I++) LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]); // Save a space to write the hash table start location. uint64_t HashTableStartLoc = OS.tell(); // Reserve the space for HashOffset field. LE.write<uint64_t>(0); // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS); return std::make_pair(HashTableStartLoc, HashTableStart); }
void DWARFYAML::EmitDebugAranges(raw_ostream &OS, const DWARFYAML::Data &DI) { for (auto Range : DI.ARanges) { auto HeaderStart = OS.tell(); writeInteger((uint32_t)Range.Length, OS, DI.IsLittleEndian); writeInteger((uint16_t)Range.Version, OS, DI.IsLittleEndian); writeInteger((uint32_t)Range.CuOffset, OS, DI.IsLittleEndian); writeInteger((uint8_t)Range.AddrSize, OS, DI.IsLittleEndian); writeInteger((uint8_t)Range.SegSize, OS, DI.IsLittleEndian); auto HeaderSize = OS.tell() - HeaderStart; auto FirstDescriptor = alignTo(HeaderSize, Range.AddrSize * 2); ZeroFillBytes(OS, FirstDescriptor - HeaderSize); for (auto Descriptor : Range.Descriptors) { writeVariableSizedInteger(Descriptor.Address, Range.AddrSize, OS, DI.IsLittleEndian); writeVariableSizedInteger(Descriptor.Length, Range.AddrSize, OS, DI.IsLittleEndian); } ZeroFillBytes(OS, Range.AddrSize * 2); } }
static Expected<std::vector<unsigned>> getSymbols(MemoryBufferRef Buf, raw_ostream &SymNames, bool &HasObject) { std::vector<unsigned> Ret; // In the scenario when LLVMContext is populated SymbolicFile will contain a // reference to it, thus SymbolicFile should be destroyed first. LLVMContext Context; std::unique_ptr<object::SymbolicFile> Obj; if (identify_magic(Buf.getBuffer()) == file_magic::bitcode) { auto ObjOrErr = object::SymbolicFile::createSymbolicFile( Buf, file_magic::bitcode, &Context); if (!ObjOrErr) { // FIXME: check only for "not an object file" errors. consumeError(ObjOrErr.takeError()); return Ret; } Obj = std::move(*ObjOrErr); } else { auto ObjOrErr = object::SymbolicFile::createSymbolicFile(Buf); if (!ObjOrErr) { // FIXME: check only for "not an object file" errors. consumeError(ObjOrErr.takeError()); return Ret; } Obj = std::move(*ObjOrErr); } HasObject = true; for (const object::BasicSymbolRef &S : Obj->symbols()) { if (!isArchiveSymbol(S)) continue; Ret.push_back(SymNames.tell()); if (auto EC = S.printName(SymNames)) return errorCodeToError(EC); SymNames << '\0'; } return Ret; }
std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) { OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator; // Populate the hash table generator. for (const auto &I : FunctionData) Generator.insert(I.getKey(), &I.getValue()); using namespace llvm::support; endian::Writer<little> LE(OS); // Write the header. LE.write<uint64_t>(IndexedInstrProf::Magic); LE.write<uint64_t>(IndexedInstrProf::Version); LE.write<uint64_t>(MaxFunctionCount); LE.write<uint64_t>(static_cast<uint64_t>(IndexedInstrProf::HashType)); // Save a space to write the hash table start location. uint64_t HashTableStartLoc = OS.tell(); LE.write<uint64_t>(0); // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS); return std::make_pair(HashTableStartLoc, HashTableStart); }
static Expected<std::vector<MemberData>> computeMemberData(raw_ostream &StringTable, raw_ostream &SymNames, object::Archive::Kind Kind, bool Thin, bool Deterministic, ArrayRef<NewArchiveMember> NewMembers) { static char PaddingData[8] = {'\n', '\n', '\n', '\n', '\n', '\n', '\n', '\n'}; // This ignores the symbol table, but we only need the value mod 8 and the // symbol table is aligned to be a multiple of 8 bytes uint64_t Pos = 0; std::vector<MemberData> Ret; bool HasObject = false; // Deduplicate long member names in the string table and reuse earlier name // offsets. This especially saves space for COFF Import libraries where all // members have the same name. StringMap<uint64_t> MemberNames; // UniqueTimestamps is a special case to improve debugging on Darwin: // // The Darwin linker does not link debug info into the final // binary. Instead, it emits entries of type N_OSO in in the output // binary's symbol table, containing references to the linked-in // object files. Using that reference, the debugger can read the // debug data directly from the object files. Alternatively, an // invocation of 'dsymutil' will link the debug data from the object // files into a dSYM bundle, which can be loaded by the debugger, // instead of the object files. // // For an object file, the N_OSO entries contain the absolute path // path to the file, and the file's timestamp. For an object // included in an archive, the path is formatted like // "/absolute/path/to/archive.a(member.o)", and the timestamp is the // archive member's timestamp, rather than the archive's timestamp. // // However, this doesn't always uniquely identify an object within // an archive -- an archive file can have multiple entries with the // same filename. (This will happen commonly if the original object // files started in different directories.) The only way they get // distinguished, then, is via the timestamp. But this process is // unable to find the correct object file in the archive when there // are two files of the same name and timestamp. // // Additionally, timestamp==0 is treated specially, and causes the // timestamp to be ignored as a match criteria. // // That will "usually" work out okay when creating an archive not in // deterministic timestamp mode, because the objects will probably // have been created at different timestamps. // // To ameliorate this problem, in deterministic archive mode (which // is the default), on Darwin we will emit a unique non-zero // timestamp for each entry with a duplicated name. This is still // deterministic: the only thing affecting that timestamp is the // order of the files in the resultant archive. // // See also the functions that handle the lookup: // in lldb: ObjectContainerBSDArchive::Archive::FindObject() // in llvm/tools/dsymutil: BinaryHolder::GetArchiveMemberBuffers(). bool UniqueTimestamps = Deterministic && isDarwin(Kind); std::map<StringRef, unsigned> FilenameCount; if (UniqueTimestamps) { for (const NewArchiveMember &M : NewMembers) FilenameCount[M.MemberName]++; for (auto &Entry : FilenameCount) Entry.second = Entry.second > 1 ? 1 : 0; } for (const NewArchiveMember &M : NewMembers) { std::string Header; raw_string_ostream Out(Header); MemoryBufferRef Buf = M.Buf->getMemBufferRef(); StringRef Data = Thin ? "" : Buf.getBuffer(); // ld64 expects the members to be 8-byte aligned for 64-bit content and at // least 4-byte aligned for 32-bit content. Opt for the larger encoding // uniformly. This matches the behaviour with cctools and ensures that ld64 // is happy with archives that we generate. unsigned MemberPadding = isDarwin(Kind) ? OffsetToAlignment(Data.size(), 8) : 0; unsigned TailPadding = OffsetToAlignment(Data.size() + MemberPadding, 2); StringRef Padding = StringRef(PaddingData, MemberPadding + TailPadding); sys::TimePoint<std::chrono::seconds> ModTime; if (UniqueTimestamps) // Increment timestamp for each file of a given name. ModTime = sys::toTimePoint(FilenameCount[M.MemberName]++); else ModTime = M.ModTime; printMemberHeader(Out, Pos, StringTable, MemberNames, Kind, Thin, M, ModTime, Buf.getBufferSize() + MemberPadding); Out.flush(); Expected<std::vector<unsigned>> Symbols = getSymbols(Buf, SymNames, HasObject); if (auto E = Symbols.takeError()) return std::move(E); Pos += Header.size() + Data.size() + Padding.size(); Ret.push_back({std::move(*Symbols), std::move(Header), Data, Padding}); } // If there are no symbols, emit an empty symbol table, to satisfy Solaris // tools, older versions of which expect a symbol table in a non-empty // archive, regardless of whether there are any symbols in it. if (HasObject && SymNames.tell() == 0) SymNames << '\0' << '\0' << '\0'; return Ret; }
void wasm::writeSleb128(raw_ostream &OS, int32_t Number, const Twine &Msg) { debugWrite(OS.tell(), Msg + "[" + utohexstr(Number) + "]"); encodeSLEB128(Number, OS); }
static void writeSymbolTable(raw_ostream &Out, object::Archive::Kind Kind, bool Deterministic, ArrayRef<MemberData> Members, StringRef StringTable) { // We don't write a symbol table on an archive with no members -- except on // Darwin, where the linker will abort unless the archive has a symbol table. if (StringTable.empty() && !isDarwin(Kind)) return; unsigned NumSyms = 0; for (const MemberData &M : Members) NumSyms += M.Symbols.size(); unsigned Size = 0; unsigned OffsetSize = is64BitKind(Kind) ? sizeof(uint64_t) : sizeof(uint32_t); Size += OffsetSize; // Number of entries if (isBSDLike(Kind)) Size += NumSyms * OffsetSize * 2; // Table else Size += NumSyms * OffsetSize; // Table if (isBSDLike(Kind)) Size += OffsetSize; // byte count Size += StringTable.size(); // ld64 expects the members to be 8-byte aligned for 64-bit content and at // least 4-byte aligned for 32-bit content. Opt for the larger encoding // uniformly. // We do this for all bsd formats because it simplifies aligning members. unsigned Alignment = isBSDLike(Kind) ? 8 : 2; unsigned Pad = OffsetToAlignment(Size, Alignment); Size += Pad; if (isBSDLike(Kind)) { const char *Name = is64BitKind(Kind) ? "__.SYMDEF_64" : "__.SYMDEF"; printBSDMemberHeader(Out, Out.tell(), Name, now(Deterministic), 0, 0, 0, Size); } else { const char *Name = is64BitKind(Kind) ? "/SYM64" : ""; printGNUSmallMemberHeader(Out, Name, now(Deterministic), 0, 0, 0, Size); } uint64_t Pos = Out.tell() + Size; if (isBSDLike(Kind)) printNBits(Out, Kind, NumSyms * 2 * OffsetSize); else printNBits(Out, Kind, NumSyms); for (const MemberData &M : Members) { for (unsigned StringOffset : M.Symbols) { if (isBSDLike(Kind)) printNBits(Out, Kind, StringOffset); printNBits(Out, Kind, Pos); // member offset } Pos += M.Header.size() + M.Data.size() + M.Padding.size(); } if (isBSDLike(Kind)) // byte count of the string table printNBits(Out, Kind, StringTable.size()); Out << StringTable; while (Pad--) Out.write(uint8_t(0)); }
void wasm::writeBytes(raw_ostream &OS, const char *Bytes, size_t Count, const Twine &Msg) { debugWrite(OS.tell(), Msg + " [data[" + Twine(Count) + "]]"); OS.write(Bytes, Count); }
void wasm::writeStr(raw_ostream &OS, StringRef String, const Twine &Msg) { debugWrite(OS.tell(), Msg + " [str[" + Twine(String.size()) + "]: " + String + "]"); encodeULEB128(String.size(), OS); OS.write(String.data(), String.size()); }
void WebAssemblyMCCodeEmitter::encodeInstruction( const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI) const { uint64_t Start = OS.tell(); uint64_t Binary = getBinaryCodeForInstr(MI, Fixups, STI); assert(Binary < UINT8_MAX && "Multi-byte opcodes not supported yet"); OS << uint8_t(Binary); // For br_table instructions, encode the size of the table. In the MCInst, // there's an index operand, one operand for each table entry, and the // default operand. if (MI.getOpcode() == WebAssembly::BR_TABLE_I32 || MI.getOpcode() == WebAssembly::BR_TABLE_I64) encodeULEB128(MI.getNumOperands() - 2, OS); const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { /* nothing to encode */ } else if (MO.isImm()) { if (i < Desc.getNumOperands()) { assert(Desc.TSFlags == 0 && "WebAssembly non-variable_ops don't use TSFlags"); const MCOperandInfo &Info = Desc.OpInfo[i]; if (Info.OperandType == WebAssembly::OPERAND_I32IMM) { encodeSLEB128(int32_t(MO.getImm()), OS); } else if (Info.OperandType == WebAssembly::OPERAND_I64IMM) { encodeSLEB128(int64_t(MO.getImm()), OS); } else if (Info.OperandType == WebAssembly::OPERAND_GLOBAL) { llvm_unreachable("wasm globals should only be accessed symbolicly"); } else if (Info.OperandType == WebAssembly::OPERAND_SIGNATURE) { encodeSLEB128(int64_t(MO.getImm()), OS); } else { encodeULEB128(uint64_t(MO.getImm()), OS); } } else { assert(Desc.TSFlags == (WebAssemblyII::VariableOpIsImmediate | WebAssemblyII::VariableOpImmediateIsLabel)); encodeULEB128(uint64_t(MO.getImm()), OS); } } else if (MO.isFPImm()) { assert(i < Desc.getNumOperands() && "Unexpected floating-point immediate as a non-fixed operand"); assert(Desc.TSFlags == 0 && "WebAssembly variable_ops floating point ops don't use TSFlags"); const MCOperandInfo &Info = Desc.OpInfo[i]; if (Info.OperandType == WebAssembly::OPERAND_F32IMM) { // TODO: MC converts all floating point immediate operands to double. // This is fine for numeric values, but may cause NaNs to change bits. float f = float(MO.getFPImm()); support::endian::Writer<support::little>(OS).write<float>(f); } else { assert(Info.OperandType == WebAssembly::OPERAND_F64IMM); double d = MO.getFPImm(); support::endian::Writer<support::little>(OS).write<double>(d); } } else if (MO.isExpr()) { const MCOperandInfo &Info = Desc.OpInfo[i]; llvm::MCFixupKind FixupKind; size_t PaddedSize; if (Info.OperandType == WebAssembly::OPERAND_I32IMM) { FixupKind = MCFixupKind(WebAssembly::fixup_code_sleb128_i32); PaddedSize = 5; } else if (Info.OperandType == WebAssembly::OPERAND_I64IMM) { FixupKind = MCFixupKind(WebAssembly::fixup_code_sleb128_i64); PaddedSize = 10; } else if (Info.OperandType == WebAssembly::OPERAND_FUNCTION32 || Info.OperandType == WebAssembly::OPERAND_OFFSET32 || Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) { FixupKind = MCFixupKind(WebAssembly::fixup_code_uleb128_i32); PaddedSize = 5; } else if (Info.OperandType == WebAssembly::OPERAND_GLOBAL) { FixupKind = MCFixupKind(WebAssembly::fixup_code_global_index); PaddedSize = 5; } else { llvm_unreachable("unexpected symbolic operand kind"); } Fixups.push_back(MCFixup::create( OS.tell() - Start, MO.getExpr(), FixupKind, MI.getLoc())); ++MCNumFixups; encodeULEB128(0, OS, PaddedSize - 1); } else { llvm_unreachable("unexpected operand kind"); } } ++MCNumEmitted; // Keep track of the # of mi's emitted. }
void wasm::writeU8(raw_ostream &OS, uint8_t Byte, const Twine &Msg) { debugWrite(OS.tell(), Msg + " [0x" + utohexstr(Byte) + "]"); OS << Byte; }
void wasm::writeU32(raw_ostream &OS, uint32_t Number, const Twine &Msg) { debugWrite(OS.tell(), Msg + "[0x" + utohexstr(Number) + "]"); support::endian::write(OS, Number, support::little); }