コード例 #1
0
bool NOX::Direction::SteepestDescent::compute(Abstract::Vector& dir, 
				 Abstract::Group& soln, 
				 const Solver::Generic& solver) 
{
  NOX::Abstract::Group::ReturnType status;

  // Compute F at current solution
  status = soln.computeF();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute F");

  // Compute Jacobian at current solution
  status = soln.computeJacobian();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute Jacobian");

  // Scale
  switch (scaleType) {

  case NOX::Direction::SteepestDescent::TwoNorm:
    
    meritFuncPtr->computeGradient(soln, dir);
    dir.scale(-1.0/dir.norm());
    break;
    
  case NOX::Direction::SteepestDescent::FunctionTwoNorm:
    
    meritFuncPtr->computeGradient(soln, dir);
    dir.scale(-1.0/soln.getNormF());
    break;
    
  case NOX::Direction::SteepestDescent::QuadMin:
    
    meritFuncPtr->computeQuadraticMinimizer(soln, dir);
      
    break;
    
  case NOX::Direction::SteepestDescent::None:
    
    meritFuncPtr->computeGradient(soln, dir);
    dir.scale( -1.0 );
    break;

  default:
    
    throwError("compute", "Invalid scaleType");
    
  }

  return true;
}
コード例 #2
0
double NOX::LineSearch::Utils::Slope::
computeSlopeWithOutJac(const Abstract::Vector& dir, 
		       const Abstract::Group& grp) 
{
  // Allocate space for vecPtr and grpPtr if necessary
  if (Teuchos::is_null(vecPtr)) 
    vecPtr = dir.clone(ShapeCopy);
  if (Teuchos::is_null(grpPtr))
    grpPtr = grp.clone(ShapeCopy);

  // Check that F exists
  if (!grp.isF()) 
  {
    utils.out() << "NOX::LineSearch::Utils::Slope::computeSlope - Invalid F" << std::endl;
    throw "NOX Error";
  }

  // Compute the perturbation parameter
  double lambda = 1.0e-6;
  double denominator = dir.norm();

  // Don't divide by zero
  if (denominator == 0.0)
    denominator = 1.0;

  double eta = lambda * (lambda + grp.getX().norm() / denominator);

  // Don't divide by zero
  if (eta == 0.0)
    eta = 1.0e-6;

  // Perturb the solution vector
  vecPtr->update(eta, dir, 1.0, grp.getX(), 0.0);

  // Compute the new F --> F(x + eta * dir)
  grpPtr->setX(*vecPtr);  
  grpPtr->computeF();

  // Compute Js = (F(x + eta * dir) - F(x))/eta
  vecPtr->update(-1.0/eta, grp.getF(), 1.0/eta, grpPtr->getF(), 0.0);
  
  return(vecPtr->innerProduct(grp.getF()));
}