virtual void on_draw() { pixfmt pixf(rbuf_window()); pixfmt_pre pixf_pre(rbuf_window()); renderer_base rb(pixf); renderer_base_pre rb_pre(pixf_pre); if(!m_test_flag) { rb.clear(agg::rgba(1, 1, 1)); } if(m_trans_type.cur_item() == 0) { // For the affine parallelogram transformations we // calculate the 4-th (implicit) point of the parallelogram m_quad.xn(3) = m_quad.xn(0) + (m_quad.xn(2) - m_quad.xn(1)); m_quad.yn(3) = m_quad.yn(0) + (m_quad.yn(2) - m_quad.yn(1)); } if(!m_test_flag) { //-------------------------- // Render the "quad" tool and controls g_rasterizer.add_path(m_quad); agg::render_scanlines_aa_solid(g_rasterizer, g_scanline, rb, agg::rgba(0, 0.3, 0.5, 0.6)); //-------------------------- agg::render_ctrl(g_rasterizer, g_scanline, rb, m_trans_type); } // Prepare the polygon to rasterize. Here we need to fill // the destination (transformed) polygon. g_rasterizer.clip_box(0, 0, width(), height()); g_rasterizer.reset(); g_rasterizer.move_to_d(m_quad.xn(0), m_quad.yn(0)); g_rasterizer.line_to_d(m_quad.xn(1), m_quad.yn(1)); g_rasterizer.line_to_d(m_quad.xn(2), m_quad.yn(2)); g_rasterizer.line_to_d(m_quad.xn(3), m_quad.yn(3)); typedef agg::span_allocator<color_type> span_alloc_type; span_alloc_type sa; agg::image_filter<agg::image_filter_hanning> filter; typedef agg::wrap_mode_reflect_auto_pow2 remainder_type; typedef agg::image_accessor_wrap<pixfmt, remainder_type, remainder_type> img_source_type; pixfmt img_pixf(rbuf_img(0)); img_source_type img_src(img_pixf); enum subdiv_shift_e { subdiv_shift = 2 }; switch(m_trans_type.cur_item()) { case 0: { // Note that we consruct an affine matrix that transforms // a parallelogram to a rectangle, i.e., it's inverted. // It's actually the same as: // tr(g_x1, g_y1, g_x2, g_y2, m_triangle.polygon()); // tr.invert(); agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); // Also note that we can use the linear interpolator instead of // arbitrary span_interpolator_trans. It works much faster, // but the transformations must be linear and parellel. typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type; interpolator_type interpolator(tr); typedef span_image_filter_2x2<img_source_type, interpolator_type> span_gen_type; span_gen_type sg(img_src, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); break; } case 1: { agg::trans_bilinear tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); if(tr.is_valid()) { typedef agg::span_interpolator_linear<agg::trans_bilinear> interpolator_type; interpolator_type interpolator(tr); typedef span_image_filter_2x2<img_source_type, interpolator_type> span_gen_type; span_gen_type sg(img_src, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } case 2: { agg::trans_perspective tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); if(tr.is_valid()) { typedef agg::span_interpolator_linear_subdiv<agg::trans_perspective, 8> interpolator_type; interpolator_type interpolator(tr); typedef span_image_filter_2x2<img_source_type, interpolator_type> span_gen_type; span_gen_type sg(img_src, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } } }
virtual void on_draw() { pixfmt pixf(rbuf_window()); renderer_base rb(pixf); renderer_solid rs(rb); rb.clear(agg::rgba(1, 1, 1)); // When Gamma changes rebuild the gamma and gradient LUTs //------------------ if(m_old_gamma != m_gamma.value()) { m_gamma_lut.gamma(m_gamma.value()); build_gradient_lut(); m_old_gamma = m_gamma.value(); } // Gradient center. All gradient functions assume the // center being in the origin (0,0) and you can't // change it. But you can apply arbitrary transformations // to the gradient (see below). //------------------ double cx = initial_width() / 2; double cy = initial_height() / 2; double r = 100; // Focal center. Defined in the gradient coordinates, // that is, with respect to the origin (0,0) //------------------ double fx = m_mouse_x - cx; double fy = m_mouse_y - cy; gradient_func_type gradient_func(r, fx, fy); gradient_adaptor_type gradient_adaptor(gradient_func); agg::trans_affine gradient_mtx; // Making the affine matrix. Move to (cx,cy), // apply the resizing transformations and invert // the matrix. Gradients and images always assume the // inverse transformations. //------------------ gradient_mtx.translate(cx, cy); gradient_mtx *= trans_affine_resizing(); gradient_mtx.invert(); interpolator_type span_interpolator(gradient_mtx); span_gradient_type span_gradient(span_interpolator, gradient_adaptor, m_gradient_lut, 0, r); // Form the simple rectangle //------------------ m_rasterizer.reset(); m_rasterizer.move_to_d(0,0); m_rasterizer.line_to_d(width(), 0); m_rasterizer.line_to_d(width(), height()); m_rasterizer.line_to_d(0, height()); // Render the gradient to the whole screen and measure the time //------------------ start_timer(); agg::render_scanlines_aa(m_rasterizer, m_scanline, rb, m_alloc, span_gradient); double tm = elapsed_time(); // Draw the transformed circle that shows the gradient boundary //------------------ agg::ellipse e(cx, cy, r, r); agg::conv_stroke<agg::ellipse> estr(e); agg::conv_transform< agg::conv_stroke< agg::ellipse> > etrans(estr, trans_affine_resizing()); m_rasterizer.add_path(etrans); agg::render_scanlines_aa_solid(m_rasterizer, m_scanline, rb, agg::rgba(1,1,1)); // Show the gradient time //------------------ char buf[64]; agg::gsv_text t; t.size(10.0); agg::conv_stroke<agg::gsv_text> pt(t); pt.width(1.5); sprintf(buf, "%3.2f ms", tm); t.start_point(10.0, 35.0); t.text(buf); m_rasterizer.add_path(pt); agg::render_scanlines_aa_solid(m_rasterizer, m_scanline, rb, agg::rgba(0,0,0)); #if !LINEAR_RGB // Show the controls //------------------ agg::render_ctrl(m_rasterizer, m_scanline, rb, m_gamma); // Apply the inverse gamma to the whole buffer // (transform the colors to the perceptually uniform space) //------------------ pixf.apply_gamma_inv(m_gamma_lut); #endif }
virtual void on_draw() { if(m_gamma.value() != m_old_gamma) { m_gamma_lut.gamma(m_gamma.value()); load_img(0, "spheres"); pixfmt pixf(rbuf_img(0)); pixf.apply_gamma_dir(m_gamma_lut); m_old_gamma = m_gamma.value(); } pixfmt pixf(rbuf_window()); pixfmt_pre pixf_pre(rbuf_window()); renderer_base rb(pixf); renderer_base_pre rb_pre(pixf_pre); renderer_solid r(rb); rb.clear(agg::rgba(1, 1, 1)); if(m_trans_type.cur_item() < 2) { // For the affine parallelogram transformations we // calculate the 4-th (implicit) point of the parallelogram m_quad.xn(3) = m_quad.xn(0) + (m_quad.xn(2) - m_quad.xn(1)); m_quad.yn(3) = m_quad.yn(0) + (m_quad.yn(2) - m_quad.yn(1)); } //-------------------------- // Render the "quad" tool and controls g_rasterizer.add_path(m_quad); r.color(agg::rgba(0, 0.3, 0.5, 0.1)); agg::render_scanlines(g_rasterizer, g_scanline, r); // Prepare the polygon to rasterize. Here we need to fill // the destination (transformed) polygon. g_rasterizer.clip_box(0, 0, width(), height()); g_rasterizer.reset(); int b = 0; g_rasterizer.move_to_d(m_quad.xn(0)-b, m_quad.yn(0)-b); g_rasterizer.line_to_d(m_quad.xn(1)+b, m_quad.yn(1)-b); g_rasterizer.line_to_d(m_quad.xn(2)+b, m_quad.yn(2)+b); g_rasterizer.line_to_d(m_quad.xn(3)-b, m_quad.yn(3)+b); typedef agg::span_allocator<color_type> span_alloc_type; span_alloc_type sa; agg::image_filter_bilinear filter_kernel; agg::image_filter_lut filter(filter_kernel, true); pixfmt pixf_img(rbuf_img(0)); typedef agg::image_accessor_clone<pixfmt> source_type; source_type source(pixf_img); start_timer(); switch(m_trans_type.cur_item()) { case 0: { agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type; interpolator_type interpolator(tr); typedef image_filter_2x2_type<source_type, interpolator_type> span_gen_type; span_gen_type sg(source, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); break; } case 1: { agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type; typedef image_resample_affine_type<source_type> span_gen_type; interpolator_type interpolator(tr); span_gen_type sg(source, interpolator, filter); sg.blur(m_blur.value()); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); break; } case 2: { agg::trans_perspective tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); if(tr.is_valid()) { typedef agg::span_interpolator_linear_subdiv<agg::trans_perspective> interpolator_type; interpolator_type interpolator(tr); typedef image_filter_2x2_type<source_type, interpolator_type> span_gen_type; span_gen_type sg(source, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } case 3: { agg::trans_perspective tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); if(tr.is_valid()) { typedef agg::span_interpolator_trans<agg::trans_perspective> interpolator_type; interpolator_type interpolator(tr); typedef image_filter_2x2_type<source_type, interpolator_type> span_gen_type; span_gen_type sg(source, interpolator, filter); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } case 4: { typedef agg::span_interpolator_persp_lerp<> interpolator_type; typedef agg::span_subdiv_adaptor<interpolator_type> subdiv_adaptor_type; interpolator_type interpolator(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); subdiv_adaptor_type subdiv_adaptor(interpolator); if(interpolator.is_valid()) { typedef image_resample_type<source_type, subdiv_adaptor_type> span_gen_type; span_gen_type sg(source, subdiv_adaptor, filter); sg.blur(m_blur.value()); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } case 5: { typedef agg::span_interpolator_persp_exact<> interpolator_type; typedef agg::span_subdiv_adaptor<interpolator_type> subdiv_adaptor_type; interpolator_type interpolator(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2); subdiv_adaptor_type subdiv_adaptor(interpolator); if(interpolator.is_valid()) { typedef image_resample_type<source_type, subdiv_adaptor_type> span_gen_type; span_gen_type sg(source, subdiv_adaptor, filter); sg.blur(m_blur.value()); agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg); } break; } } double tm = elapsed_time(); pixf.apply_gamma_inv(m_gamma_lut); char buf[64]; agg::gsv_text t; t.size(10.0); agg::conv_stroke<agg::gsv_text> pt(t); pt.width(1.5); sprintf(buf, "%3.2f ms", tm); t.start_point(10.0, 70.0); t.text(buf); g_rasterizer.add_path(pt); r.color(agg::rgba(0,0,0)); agg::render_scanlines(g_rasterizer, g_scanline, r); //-------------------------- agg::render_ctrl(g_rasterizer, g_scanline, rb, m_trans_type); agg::render_ctrl(g_rasterizer, g_scanline, rb, m_gamma); agg::render_ctrl(g_rasterizer, g_scanline, rb, m_blur); }